

Оценка влияния различных участков

программного кода на энергопотребление

вычислительной системы

Е. А. Киселёв1, Д. А. Чубаров2, А. В. Баранов3

1 МСЦ РАН – филиал ФГУ ФНЦ НИИСИ РАН, НИЦ «Курчатовский институт», Москва, Россия,

kiselev@jscc.ru, +7(926)223-88-66;

2 РТУ МИРЭА, Москва, Россия, chubarovdima@inbox.ru;

3 МСЦ РАН – филиал ФГУ ФНЦ НИИСИ РАН, НИЦ «Курчатовский институт», Москва, Россия,

anton.baranov@jscc.ru, +7(903)215-43-42.

Аннотация. Работа посвящена проверке гипотезы о возможности оценки влияния исходного кода про-

граммы на энергопотребление вычислительной системы. На основе исследованных методов оптимизации ав-

торами предложен алгоритм для оценки энергоэффективности программного кода. Разработан макет программ-

ного средства в виде расширения для Visual Studio Code, реализующий представленный алгоритм. Приведены

экспериментальные результаты по исследованию различных способов повышения энергоэффективности про-

граммного кода, а также результаты проверки работоспособности разработанного алгоритма.

Ключевые слова: энергоэффективность, анализ исходного кода, оптимизация программного

кода, RAPL, VS Code

1. Введение

С каждым годом расширяется область приме-

нения высокопроизводительных вычислитель-

ных систем, возрастает их энергопотребление. С

увеличением числа процессорных ядер в таких

системах растет степень параллелизма, появля-

ются его новые уровни, такие как векторная об-

работка, вычисления на графических процессо-

рах или иных ускорителях. Усложняются парал-

лельные алгоритмы, и пользователи суперкомпь-

ютеров вместо разработки собственных алгорит-

мов и программ предпочитают применять гото-

вые программные пакеты и коды. В этой связи

перестают работать подходы к оптимизации па-

раллельных программ, основанные на частич-

ной или полной переработке параллельного ал-

горитма. Ряд проблем, например, наличие не-

устранённых зависимостей при векторизации

программного кода, не могут быть решены без

нарушения алгоритма работы программы [1].

При этом следует отметить, что для таких задач

применение различных техник оптимизации

программного кода позволяет не только значи-

тельно сократить время выполнения параллель-

ного приложения, но и добиться сокращения

энергопотребления вычислительной системы, на

котором оно было запущено.

В настоящей работе мы сфокусировали вни-

мание на исследовании влияния различных стра-

тегий оптимизации программного кода на энер-

гопотребление вычислительной системы. Нами

предложен подход к выявлению участков про-

граммного кода, оказывающих наибольшее вли-

яние на энергопотребление вычислительной си-

стемы. Отличительной особенностью предлага-

емого подхода является отсутствие необходимо-

сти запуска программы на выполнение и, как

следствие, сокращение затрат на лишние тесто-

вые запуски.

Наше исследование можно условно разде-

лить на две части. Первая часть посвящена ана-

лизу подходов к оптимизации программного

обеспечения и экспериментальной оценке их

влияния на энергопотребление. Полученные ре-

зультаты позволяют оценить не только влияние

различных стратегий оптимизации на энергоэф-

фективность, но и энергозатраты на выполнение

часто используемых вычислительных операций.

Во второй части исследования представлен алго-

ритм автоматического выявления наиболее энер-

гоемких участков программного кода, требую-

щих наибольшего внимания со стороны разра-

ботчика. Для демонстрации работы предложен-

ного алгоритма было разработано расширение

для среды разработки Visual Studio Code и про-

демонстрирована его работа на примере двух те-

стовых параллельных программ.

mailto:kiselev@jscc.ru
mailto:anton.baranov@jscc.ru

68

2. Способы и алгоритмы

повышения

энергоэффективности

 программного кода

Для сокращения энергопотребления вычис-

лительных систем при выполнении программ

применяются два основных подхода. Первый

предполагает оптимизацию программного кода

(Energy-Aware Programming) [2,3], второй – оп-

тимизацию выделения вычислительных ресур-

сов для выполнения каждого приложения

(Energy Aware Scheduling) [4]. Преимуществом

первого подхода является возможность заранее

(до запуска программы) выявить участки про-

граммного кода, которые будут оказывать значи-

тельное влияние на энергопотребление, и опти-

мизировать их. Основным недостатком этого

подхода является необходимость в наличии ис-

ходного кода программы. Преимуществом вто-

рого подхода является возможность сокращения

энергопотребления на основе накопленных дан-

ных статистики использования ресурсов вычис-

лительной системы без модификации исходного

кода. Основным недостатком здесь является

необходимость выполнения серии запусков про-

граммы для сбора статистических данных. При

этом энергопотребление программы на одних и

тех же вычислительных ресурсах может отли-

чаться в зависимости от параметров запуска

(например, числа используемых потоков).

Для оптимизации программного кода исполь-

зуют следующие различные стратегии.

1. Рефакторинг программного кода;

2. Оптимизация алгоритма программы;

3. Оптимизация на этапе компиляции про-

граммы.

Рефакторинг кода – это процесс переработки

исходного кода программы путем изменения его

внутренней структуры без изменения внешнего

поведения с целью улучшения удобочитаемости,

надежности, безопасности и производительно-

сти. В последнее время именно рефакторинг

чаще всего применяется для повышения энер-

гоэффективности программ. Большой вклад в

исследование и развитие этого направления

внесли работы [2, 3]. Авторами отмечено, что

применение различных методов рефакторинга

позволяет значительно сократить энергопотреб-

ление мобильных устройств под управлением

операционной системы Android. В работе [4]

продемонстрировано, как использование раз-

личных методов рефакторинга влияет на энерго-

потребление Java-программ. Результаты анало-

гичных исследований, но для большего числа

методов рефакторинга и для программ на языке

С++ представлены в работе [5]. Общим для всех

работ является вывод о том, что рефакторинг

программного кода может приводить как к со-

кращению, так и увеличению энергопотребле-

ния. При этом определено, что вне зависимости

от приложений, могут быть выделены энергоэф-

фективные методы рефакторинга [5]. В работе

[6] исследовано влияние комбинаций методов

рефакторинга кода Java и C#-программ для мо-

бильных и настольных систем. Установлено, что

не для всех случаев комбинирование энергоэф-

фективных методов рефакторинга приводит к

сокращению энергопотребления. Авторы отме-

чают необходимость продолжения исследования

различных комбинаций методов рефакторинга,

выявления совместимых друг с другом, а также

продолжения работ по совершенствованию про-

граммных средств измерения энергопотребле-

ния.

В работе [7] авторы продемонстрировали

влияние эффективности алгоритма программы

на энергопотребление вычислительной системы.

В ходе эксперимента была произведена сорти-

ровка числовых элементов пузырьковым алго-

ритмом с вычислительной сложностью O(n2) и

алгоритмом «пирамидальной (кучной) сорти-

ровки» вычислительной сложности O(n×log(n)).

В результате алгоритм «пирамидальной (куч-

ной) сортировки» потребил в 1,5 раза меньше

энергии, чем алгоритм «пузырьковой сорти-

ровки». В работе [8] авторы для решения голово-

ломки «Ханойские башни» использовали рекур-

сивный и итеративный алгоритмы. Итеративный

вариант решения головоломки приводил к уве-

личению энергопотребления в 5,14 раза по срав-

нению с рекурсивным. Результаты таких экспе-

риментов демонстрируют существенное влия-

ние алгоритма на энергопотребление вычисли-

тельной системы.

Проектирование циклов с соблюдением неко-

торых простых правил позволяет существенно

снизить влияние их выполнения на энергопо-

требление вычислительной системы. Например,

использование беззнаковых целочисленных

счетчиков или нуля в качестве условия заверше-

ния обратного отсчета ускоряет выполнения

цикла за счет использования меньшего количе-

ства регистров микропроцессора. Энергопотреб-

ление может быть снижено путем разворачива-

ния циклов – объединения инструкций, которые

вызываются в нескольких итерациях цикла, в

одну итерацию. Разворачивание циклов снижает

точность предиктора ветвлений, поскольку су-

ществует меньше ветвей, на которых предиктор

может обучить свое поведение. Однако это

также снижает частоту прерывания непрерыв-

ного потока последовательных выборок, так что

в качестве совокупного эффекта потребление

энергии на инструкцию уменьшается.

69

Циклы «вращения» и «опроса» являются

другими потенциальными источниками повы-

шенного энергопотребления. В циклах «враще-

ния» процесс или поток многократно проверяет,

является ли условие истинным, например, до-

ступен ли ввод с клавиатуры или блокировка.

Когда поток находится в цикле «вращения», он

остается активным, не выполняя полезную за-

дачу. Использование циклов «вращения» может

быть эффективным, если потоки заблокированы

на короткие периоды времени. Таким образом

можно избежать накладных расходов от пере-

планирования процесса операционной системы

или переключения контекста. В качестве альтер-

нативы применяется метод «опроса». В этом

случае поток переходит в спящее состояние до

тех пор, пока не произойдет какое-либо событие.

Программисту необходимо найти компромисс

между экономией энергии, получаемой за счет

более длительного пребывания в состоянии с по-

ниженным энергопотреблением, и накладными

расходами, возникающими из-за перепланирова-

ния или частых переходов состояний.

Операционные системы предоставляют про-

граммистам механизм управления потоками че-

рез интерфейс системных вызовов. Использова-

ние нескольких потоков и нескольких ядер обес-

печивает лучшую производительность, ускоряет

вычислительный процесс и, как следствие, со-

кращает совокупные затраты на энергопотребле-

ние [9].

Векторизация программного кода и исполь-

зование расширенного набора инструкций, та-

ких как SIMD, также позволяют ускорить вычис-

ления и сократить энергопотребление.

Оптимизация на этапе компиляции про-

граммного кода осуществляется в автоматиче-

ском режиме с использованием оптимизирую-

щих компиляторов, которые выполняют анализ

и преобразования программ на разных уровнях

абстракции, начиная от исходного кода, проме-

жуточного кода, такого как трехадресный код, до

ассемблерного и машинного кода. Анализы и

преобразования могут иметь разные области

действия. Они могут выполняться в пределах од-

ного базового блока (локальные), между базо-

выми блоками, внутри процедуры (глобальные)

или между границами процедур (межпроцедур-

ные). Традиционно оптимизирующие компиля-

торы пытаются сократить общее время выполне-

ния программы или использование ресурсов, та-

ких как память. Сам процесс компиляции может

быть выполнен до выполнения программы (ста-

тическая компиляция) или во время выполнения

программы (динамическая компиляция). Это

большое пространство проектирования является

основной проблемой для разработчиков компи-

ляторов. Необходимо рассмотреть множество

компромиссных вариантов для того, чтобы

оправдать разработку и реализацию конкретного

прохода или стратегии оптимизации.

3. Результаты исследования

способов увеличения

энергоэффективности

программного кода

С целью проверки влияния оптимизации про-

граммного кода на его энергоэффективность в

рамках настоящего исследования проведена экс-

периментальная оценка наиболее результатив-

ных методов оптимизации программного кода.

Первая серия экспериментов была направ-

лена на проверку гипотезы из работы [10] о том,

что для копирования массива эффективнее ис-

пользовать встроенные функции вместо циклов.

Вторая серия экспериментов была посвящена

проверке другой гипотезы из работы [10] о том,

что локальность при обращении к данным может

снизить общее энергопотребление системы.

Третья серия экспериментов производилась с це-

лью проверки гипотезы R4 [11], в которой пред-

ложено использовать единственный цикл вместо

нескольких вложенных для сокращения энерго-

потребления.

Так как в [11] рассматривались не только от-

дельные методы оптимизации программного

кода, но и совокупность этих методов, было при-

нято решение в четвертой серии экспериментов

оценить совокупность способов под обозначе-

нием С4, которая включает в себя: замену

ссылки на саму переменную, добавление пере-

менных в код для упрощения конструкций и уда-

ление вложенных циклов.

Приведённые в таблице 1 результаты экспе-

риментов демонстрируют эффективность пере-

численных выше методов. Отдельно стоит выде-

лить эффективность способа, связанного с век-

торизацией.

4. Влияние типовых операций

на энергопотребление

Рассмотрим оценку влияния на энергопо-

требление часто используемых типовых вычис-

лительных операций. В работе [10] было пока-

зано, что центральный процессор (ЦП) является

бо́льшим потребителем электроэнергии по срав-

нению с оперативной памятью (ОП) и дисковой

подсистемой. Однако в [10] не показано, какие

операции, выполняемые ЦП, являются наиболее

энергозатратными. Также следует отметить, что

в указанной работе эксперименты проводились с

твердотельным накопителем (SDD), а не с жест-

70

ким диском (HDD), обладающим меньшей ско-

ростью и большим энергопотреблением.

С целью определения влияния различных

операций на энергопотребление ЦП нами была

проведена серия измерений. В ходе каждого из-

мерения исследуемые операции (сложение, раз-

ность, деление, умножение) повторялись в цикле

106, 107, 109, 1011, 1013 раз. Полученные значе-

ния были усреднены и представлены на графи-

ках (рис. 1-4).

В ходе проведения экспериментов было заме-

чено, что с определённого момента потребление

энергии перестаёт резко расти. Это связано с

имеющимися ограничениями ЦП и невозможно-

стью одновременного выполнения требуемого

количества вычислительных операций. При

большом количестве однотипных операций об-

разуется очередь на обработку, что приводит к

замедлению роста энергопотребления и увели-

чению времени обработки всех операций. По

этой причине рост энергопотребления замедля-

ется.

Рис. 1. Энергозатраты на выполнение операций

разности с плавающей и фиксированной точкой

Рассмотрим результаты эксперимента по

оценке энергозатрат при выполнении операций

чтения файла, приведенные на рисунках 5 и 6.

На графиках видно, что при обращении к жёст-

кому диску (рис. 5) расходуется значительно

больше энергии по сравнению с арифметиче-

скими операциями. В этом случае на энергопо-

требление оказывает влияние не только частота

обращения к жесткому диску, но и объём данных

(рис. 6). Энергозатраты на обращение к опера-

тивной памяти сопоставимы с арифметиче-

скими операциями (рис. 7).

Рис. 2. Энергозатраты на выполнение операций

сложения с плавающей и фиксированной точ-

кой

Рис.3. Энергозатраты на выполнение операций

деления с плавающей и фиксированной точкой

Рис.4. Энергозатраты на выполнение операций

умножения с плавающей и фиксированной точ-

кой

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

1 0 ^ 6 1 0 ^ 8 1 0 ^ 1 0 1 0 ^ 1 2 1 0 ^ 1 4

Э
н

ег
о

за
та

ты
, Д

ж

Число итераций цикла

Вычитание с фиксированной точкой
Вычитание с плавоющей точкой

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

1 0 ^ 6 1 0 ^ 8 1 0 ^ 1 0 1 0 ^ 1 2 1 0 ^ 1 4

Э
н

ер
го

за
тр

ат
ы

, Д
ж

Число итераций цикла

Сложение с фиксированной точкой
Сложение с плавоющей точкой

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

1 0 ^ 6 1 0 ^ 8 1 0 ^ 1 0 1 0 ^ 1 2 1 0 ^ 1 4

Э
н

ер
го

за
тр

ат
ы

, Д
ж

Число итераций цикла

Деление с фиксированной точкой

Деление с плавоющей точкой

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

1 0 ^ 6 1 0 ^ 8 1 0 ^ 1 0 1 0 ^ 1 2 1 0 ^ 1 4

Э
н

ер
го

за
тр

ат
ы

, Д
ж

Число итераций цикла

Умножение с фиксированной точкой
Умножение с плавоющей точкой

71

Рис. 5. Энергозатраты на операцию записи символа в

файл в зависимости от числа итераций

Рис. 6. Энергозатраты на операцию чтения данных из

файла

Рис. 7. Энергозатраты на запись символа в оператив-

ную память в зависимости от числа итераций

5. Алгоритм оценки

энергоэффективности исходного

кода программ

Анализ результатов экспериментов позво-

ляет сделать вывод о практической возможности

выявления энергозатратных операций до запуска

программы. Например, участки программного

кода с вложенными циклами for или while, опе-

рации обращения к файловой системе, операции

над числами с плавающей точкой и другие опе-

рации могут быть отранжированы в соответ-

ствии с их энергозатратностью. Полученные

данные могут быть использованы при компиля-

ции на этапе семантического анализа программ-

ного кода или в среде разработки на этапе про-

филирования и отладки программы.

С учётом полученных данных нами предло-

жен алгоритм выявления участков программ-

ного кода с повышенным энергопотреблением,

блок-схема которого представлена на рисунке 8.

Рассмотрим основные шаги алгоритма.

Шаг 1. Инициализировать переданные в ка-

честве входных аргументов множества:

- множество O включает в себя упорядочен-

ный набор конструкций (операции с фиксиро-

ванной, плавающей точкой, операции доступа к

ОП, HDD, циклы и др.), которые будут использо-

ваться для анализа;

- множество W включает в себя коэффици-

енты, которые соответствуют конструкциям из

множества O (например, операциям с фиксиро-

ванной, плавающей точкой и операции доступа к

ОП может соответствовать 1, а операциям до-

ступа к HDD и циклам, как более энергозатра-

ным – 2 и т.д.);

- множество S включает в себя набор строк

программного кода, которые будут анализиро-

ваться.

Шаг 2. Выполнить N итераций цикла, где N –

число элементов во множестве S. На каждой ите-

рации цикла выполнить шаги 2.1-2.3.

Шаг 2.1. Взять очередную строку из множе-

ства S и найти соответствующую ей конструк-

цию из множества O. Отметить, если строка яв-

ляется началом или концом цикла.

Шаг 2.2. Найденной на шаге 2.1 конструкции

определить число из множества W, присвоить

его текущей строке из множества S и перейти к

шагу 2.3.

Шаг 2.3. Проверить, находится ли текущая

строка из множества S в цикле (в том числе и во

вложенных циклах). Если строка входит в цикл,

то к присвоенному на шаге 2.2 значению прибав-

ляется значение всех циклов, в которые она вхо-

дит.

Таким образом, после окончания работы ал-

горитма на выходе формируется модифициро-

ванное множество S, где каждой строке соответ-

ствует число, характеризующее ее энергоза-

траты.

Алгоритм является сходящимся, так как

число его итераций зависит от числа объектов в

конечном множестве S. Поскольку в алгоритме

реализован однократный обход всех строк кода,

его вычислительная сложность не превышает

О(n), где n – количество строк кода.

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

1 0 ^ 6 1 0 ^ 7 1 0 ^ 9 1 0 ^ 1 1 1 0 ^ 1 3

Э
н

ер
го

за
тр

ат
ы

, Д
ж

Число итераций цикла

0

100

200

300

400

500

600

700

1 2 4 6 8

Э
н

ер
го

за
тр

ат
ы

, Д
ж

Объём файла, ГБ

0,00

10,00

20,00

30,00

40,00

50,00

60,00

1 0 ^ 6 1 0 ^ 8 1 0 ^ 1 0 1 0 ^ 1 2 1 0 ^ 1 4

п
о

тр
ач

ен
н

ая
 э

н
ер

ги
я,

 Д
ж

число итераций цикла

Обращение к ОП

72

Рис. 8. Блок-схема алгоритма определения влия-

ния заданного участка кода на энергопотребле-

ние

6. Проверка алгоритма

Предложенный алгоритм был реализован в

виде расширения редактора программного кода

Visual Studio Code (далее – VS Code) [12]. Разра-

ботанное расширение, названное Energy Mapper,

включает в себя модуль анализа программного

кода и модуль визуализации результатов ана-

лиза. Схема взаимодействия программных моду-

лей приведена на рисунке 9.

Для работы с разработанными модулями

пользователь должен открыть интересующий

его файл в среде разработки VS Code и запустить

Energy Mapper.

Открытый файл передаётся на вход модуля

анализа программного кода, который возвращает

коэффициенты для каждой строки в соответ-

ствие с шагами 2.2 и 2.3 алгоритма. Модуль ви-

зуализации получает эти коэффициенты и в со-

ответствии с ними подсвечивает строки про-

граммного кода в среде разработки.

Проверка работоспособности модулей была

проведена при помощи программ, реализующих

алгоритмы быстрой сортировки и решения за-

дачи Коши. Сначала было проведено измерение

энергопотребления при запуске программ без из-

менений программного кода, а затем – с оптими-

зацией энергозатратных участков кода, отмечен-

ных в Energy Mapper, как показано на рисунке

10. Измерения значений энергопотребления про-

изводилось с помощью библиотеки RAPL Stop-

watch [13].

Рис. 9. Структура разработанных модулей

Рис. 10. Демонстрация фрагмента программ-

ного кода, размеченного модулем визуализации

Из результатов, приведённых в таблице 2,

видно, что удалось достичь уменьшения энерго-

73

потребления при выполнении тестовых про-

грамм. При этом в эксперименте, связанным с за-

дачей быстрой сортировки, удалось достичь бо-

лее «скромных» результатов по сравнению с за-

дачей Коши. Это связано с тем, что в программ-

ном коде алгоритма быстрой сортировки присут-

ствует энергозатратная функция генерации псев-

дослучайных чисел rand().

Разработанное расширение Energy Mapper

предоставляет возможность при помощи конфи-

гурационных настроек задавать собственные но-

вые сущности (функции или методы) для ана-

лиза.

Заключение

Результаты проведенных исследований поз-

воляют сделать ряд выводов.

Во-первых, рефакторинг программного кода

позволяет снизить накладные расходы на время

выполнения параллельной программы и ее вли-

яние на энергопотребление вне зависимости от

выбранного языка программирования. Могут

быть выделены языковые конструкции и функ-

ции оказывающие наибольшее влияния на энер-

гопотребление. По мнению авторов, представля-

ется целесообразным провести их классифика-

цию.

Во-вторых, предложенные в настоящей ра-

боте алгоритм и программное средство Energy

Mapper демонстрируют практическую возмож-

ность оценки энергозатрат на выполнение про-

грамм до их запуска на вычислительной си-

стеме.

В-третьих, результаты проведенных нами

экспериментов с программной реализацией ал-

горитмов быстрой сортировки и решения задачи

Коши продемонстрировали целесообразность

использования расширения Energy Mapper для

оптимизации исходных текстов программ.

Работа выполнена в рамках государственного

задания по теме FNEF-2024-0016.

Таблица 1. Оценка влияния оптимизации кода на энергоэффективность

Способы оптимизации программ-

ного кода
Изменение

мощности в %

Изменение вре-

мени в %

Изменение по-

треблённой

энергии в %

Использование функции копирова-

ния данных вместо цикла
+14.09 -86.01 -84.11

Использование локальности при об-

ращении к данным
+2.95 -10.73 -8.12

Использование векторизация вместо

последовательного выполнения
+12.61 -98.48 -98.3

Использование совокупности спосо-

бов оптимизации программного кода
+9.07 -98.66 -98.59

Таблица 2. Оценка влияния оптимизации кода на энергоэффективность

 Потреблённая энергия кода

(Дж)

Изменение потреблённой

энергии

Задача быстрой сортировки 689134 0%

Оптимизированная задача

быстрой сортировки

588767 -14.6%

Задача Коши 527951 0%

Оптимизированная задача

Коши

173301 -67.1%

74

Assessing of the Impact of Source Code Differ-

ent Sections on the Computing System Power

Consumption

E. A. Kiselev, D. A. Chubarov, A. V. Baranov

Abstract. The hypothesis about the possibility of assessing the impact of the program source code on the com-

puting system power consumption is tested in the work. The authors proposed an algorithm for assessing the program

code energy efficiency based on the studied optimization methods. The software tool prototype as an extension for

Visual Studio Code implementing the presented algorithm was developed. Experimental results on the study of various

ways to improve the program code energy efficiency, as well as the results of testing the developed algorithm operability

are presented.

Keywords: energy efficiency, code analysis, code optimization, RAPL, VS Code

Литература

1. Юрченко А. В. Проектирование и анализ программного обеспечения с низким энергопотреб-

лением с помощью программных метрик энергоэффективности // Машиностроение и компьютер-

ные технологии. 2013. №1. С. 215-234.

2. da Silva, W.G.; Brisolara, L.; Corrêa, U.B.; Carro, L. Evaluation of the impact of code refactoring on

embedded software efficiency. In Proceedings of the 1st Workshop de Sistemas Embarcados, Gramado,

Brazil, 24–28 May 2010; pp. 145–150.

3. Gottschalk M., Jelschen J., Winter A. Energy-efficient code by refactoring. Softwaretechnik-Trends

2013, 33, 23–24.

4. Sahin, C.; Pollock, L.; Clause, J. How do code refactorings affect energy usage? In Proceedings of

the 8th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, To-

rino, Italy, 18–19 September 2014; pp. 1–10.

5. Park, J.J.; Hong, J.E.; Lee, S.H. Investigation for Software Power Consumption of Code Refactoring.

In Proceedings of the Twenty Sixth International Conference on Software Engineering and Knowledge

Engineering (SEKE), Vancouver, BC, Canada, 1–3 July 2014; pp. 717–722.

6. Hayri Acar, Gülfem I Alptekin, Jean-Patrick Gelas, Parisa Ghodous. The Impact of Source Code in

Software on Power Consumption // International Journal of Electronic Business Management, Vol. 14, pp.

42-52 (2016).

7. T. Johann, M. Dick, S. Naumann, and E. Kern, “How to measure energy-efficiency of software: Met-

rics and measurement results” in Green and Sustainable Software (GREENS), 2012 First International

Workshop on, 2012, pp. 51–54.

8. A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier, “A preliminary study of the impact of

software engineering on GreenIT,” in Green and Sustainable Software (GREENS), 2012 First International

Workshop on, 2012, pp. 21–27.

9. Y. D. Liu, “Energy-efficient synchronization through program patterns,” in Green and Sustainable

Software (GREENS), 2012 First International Workshop on, 2012, pp. 35–40.

10. Hayri Acar, Gülfem I Alptekin, Jean-Patrick Gelas, Parisa Ghodous. The Impact of Source Code in

Software on Power Consumption // International Journal of Electronic Business Management. 2016. №14.

С. 42-52.

11. İbrahim Şanlıalp, Muhammed Maruf Öztürk, Tuncay Yiğit. Energy Efficiency Analysis of Code

Refactoring Techniques for Green and Sustainable Software in Portable Devices // Electronics. 2022. №11.

С. 442-459.

12. Visual Studio Code Getting Started [электронный ресурс] // Microsoft URL: https://code.visu-

alstudio.com/docs/ (дата обращения 26.10.2024)

13. Github. The RAPL Stopwatch library [электронный ресурс] // https://github.com/Lo-

rienLV/rapl_stopwatch?ysclid=m2qc5vo4zz264735644 (дата обращения 26.10.2024).

