

Динамический анализ и оптимизация

ввода-вывода в среде виртуализации GNU

Linux/QEMU/KVM

А.Б. Бетелин1, Г.А. Прилипко2, А.Г. Прилипко3, С.Г. Романюк4, Д.В. Самборский5

1ФГУ ФНЦ НИИСИ РАН, Москва, Россия, ab@niisi.msk.ru;

2ФГУ ФНЦ НИИСИ РАН, Москва, Россия, prilipko@niisi.msk.ru;

3ФГУ ФНЦ НИИСИ РАН, Москва, Россия, aleksey.prilipko@gmail.com;

4ФГУ ФНЦ НИИСИ РАН, Москва, Россия, sgrom@niisi.ras.ru;

5ФГУ ФНЦ НИИСИ РАН, Москва, Россия, samborsky_d@fastmail.com

Аннотация. В данной статье приведены результаты тестирования производительности ввода-вывода

виртуальных операционных систем в среде виртуализации GNU Linux/QEMU/KVM и предложены способы

увеличения производительности приложений виртуальных ОС с помощью более оптимального использования

файлового кэша ОС Linux. Разработана утилита динамического анализа и оптимизации использования вирту-

альных дисков. Тестирование показало, что использование данной утилиты позволяет достичь более чем дву-

кратного ускорения смешанных нагрузок ввода-вывода на SSD-накопителях.

Ключевые слова: виртуализация, ввод-вывод данных, QEMU, KVM, Linux, vmtouch,

vmprobe, mincore

1. Введение

Система виртуализации QEMU/KVM [1, 2] в

операционной системе GNU Linux предлагает

несколько режимов подключения виртуальных

или реальных устройств накопителей данных

(так называемых «дисковых» устройств). Нако-

пителем данных для виртуальной ОС может вы-

ступать обычный файл, дисковый том, SATA-

или SCSI-устройство, NVMe-накопитель дан-

ных. Подключение файла или дискового тома в

качестве виртуального накопителя данных осу-

ществляется либо в режиме эмуляции некото-

рого протокола (SATA, SCSI), либо с помощью

драйвера семейства VirtIO, использующего тех-

нологию паравиртуализации, который должен

быть установлен в виртуальную ОС. В послед-

нем случае VirtIO-драйвер напрямую указывает

буфер данных и команду записи или чтения биб-

лиотеке гипервизора, которая выполняет чтение

или запись без лишних накладных расходов.

Для делегирования виртуальной ОС моно-

польного доступа к накопителю данных исполь-

зуются драйверы vhost-scsi, vhost-user, vfio-pci.

Такое подключение накопителей данных обеспе-

чивает максимальную общую производитель-

ность и минимальное время выполнения отдель-

ных команд ввода-вывода. Но при этом усложня-

ется настройка сервера виртуализации и стано-

вятся невозможными функции моментальных

бэкапов (live snapshot), безостановочной мигра-

ции (live migration), управление скоростью

ввода-вывода (IO throttling) и др.

Поэтому при проектировании вычислитель-

ного кластера для среды виртуализации

QEMU/KVM приходится находить компромисс

между требуемой скоростью ввода-вывода и

гибкостью администрирования. Обычно, если

не требуется достичь 100% скорости накопи-

теля, то для локальных накопителей оказывается

оптимальным использование драйверов семей-

ства VirtIO. Так, в статье [3] было показано, что

даже при использовании быстрого накопителя

Intel Optane 900P драйвер virtio-scsi с выделен-

ным потоком управления ввода-вывода

(iothread) показывает скорость записи блоков

данных размером 4Кб всего на 25% меньше, чем

при использовании драйвера vhost-user и биб-

лиотеки Intel SPDK для прямого доступа к

устройству. В случае блоков размером 2Мб раз-

ницы в производительности между virtio-scsi и

vhost-user не наблюдается.

При подключении виртуальных дисков с по-

мощью VirtIO драйверов система QEMU исполь-

зует стандартный стек ввода-вывода ядра Linux,

поэтому при работе виртуального диска может

быть задействован системный файловый кэш

(называемый «page cache» в терминологии ядра

Linux). Согласно некоторым популярным реко-

мендациям кэширование SSD-накопителей не

ускоряет доступ к данным, и его советуют вы-

ключать. Тем не менее, любое подобное общее

утверждение рекомендуется проверять тщатель-

ным тестированием. Чтобы исследовать влияние

26

файлового кэша на производительность вирту-

альных дисков, авторами были выполнены соот-

ветствующие тесты и предложены рекоменда-

ции по увеличению скорости ввода-вывода вир-

туальных ОС QEMU/KVM.

Для ускорения ввода-вывода с помощью бо-

лее оптимального использования файлового

кэша была разработана утилита vmdisktouch, вы-

полняющая динамический анализ использова-

ния виртуального диска и своевременную за-

грузку часто используемых областей диска в

файловый кэш. На момент публикации авторы

не имеют сведений о наличии другого общедо-

ступного инструмента с функциями, аналогич-

ными функциям утилиты vmdisktouch.

2. Конфигурация среды

виртуализации QEMU

В данной работе были рассмотрены следую-

щие конфигурации серверов:

• 1 или 2 процессора семейства Intel Xeon;

• от 128Гб до 512Гб оперативной памяти;

• несколько SSD- и HDD-накопителей дан-

ных, объединенных в RAID1- или RAID10- мас-

сивы.

Эта конфигурация соответствует серверу

средней ценовой категории и оптимальна по со-

отношению цены оборудования к производи-

тельности виртуализированных приложений,

если нет необходимости в безостановочной ми-

грации виртуальных ОС. На сервере подобной

конфигурации могут работать несколько вирту-

альных ОС, выполняющих функции файл-серве-

ров, серверов приложений и программных сете-

вых маршрутизаторов.

Драйвер локальных виртуальных дисков си-

стемы QEMU имеет параметр cache, задающий

режим, в котором QEMU оперирует с файлом

или устройством виртуального диска.

Четыре возможных значения этого параметра

соответствуют четырем комбинациям флагов

O_DIRECT и O_DSYNC системного вызова от-

крытия файла: cache=none – O_DIRECT;

cache=writethrough – O_DSYNC;

cache=directsync – O_DIRECT и O_DSYNC;

cache=writeback – без флагов. По стандарту

POSIX [9] опция O_DIRECT запрещает кэширо-

вание данных в общесистемном файловом кэше,

а опция O_DSYNC указывает на необходимость

ожидания подтверждения от устройства накопи-

теля каждой операции записи данных.

Режим cache=writeback не является надеж-

ным, так как он не гарантирует сохранности за-

писанных данных при внезапном отключении

питания. С другой стороны, полное отключение

кэширования данных [1] (режимы cache=none и

cache=directsync) не рекомендуется для всех

накопителей данных кроме самых скоростных

NVMe и NVRAM устройств, имеющих пропуск-

ные способности и задержки более близкие к ха-

рактеристикам оперативной памяти, чем к дис-

ковым устройствам. Таким образом, оптималь-

ным режимом работы виртуальных дисков для

локальных накопителей является режим кэши-

рования данных со сквозной записью,

cache=writethrough.

3. Измерения влияния

файлового кэша на

производительность

ввода-вывода

Для оценки возможности ускорения диско-

вого ввода-вывода в случае попадания данных в

файловый кэш был выполнен набор тестов про-

изводительности, предоставляемых утилитой

Flexible I/O (FIO) версии 3.25 [4]. Тесты выпол-

нялись из виртуальной ОС по отношению к вир-

туальным дискам (файлам в формате RAW).

Каждый тест выполнялся либо с виртуальным

диском, полностью загруженным в файловый

кэш и удерживаемым в нем командой vmtouch -l

..., либо наоборот, полностью вытесненным из

кэша командой vmtouch -e ... перед запуском те-

ста.

В таблицах 1 и 2 собраны результаты тести-

рования производительности виртуального

диска на SSD и HDD устройствах в двух режи-

мах:

• многопотоковый асинхронный режим, ко-

мандой вида

fio -ioengine=libaio -rw=randrw -

rwmixread=80 -bs=4k -direct=1 -

iodepth=128 -numjobs=4 -sync=0 ...;

• однопотоковый синхронный режим, ко-

мандой вида

fio -ioengine=libaio -rw=randrw -

rwmixread=80 -bs=4k -direct=1 -

iodepth=1 -numjobs=1 -sync=1

Опции -rwmixread=80 -bs=4k задают режим

тестирования чтения и записи блоков данных

размеров 4096 байта в отношении 4 к 1 (80% —

чтение, 20% — запись). В тестах SSD устройств

(таблица 1) были задействованы два NVMe-

накопителя данных модели Intel SSD Pro 6100p,

объединенных в программный массив RAID1. В

тестах HDD устройств (таблица 2) применялись

четыре HDD-накопителя данных модели Seagate

ES.3 ST2000NM0033, объединенных в про-

граммный массив RAID10. В обоих случаях вир-

туальным диском служил файл в формате RAW,

27

который был создан в режиме полной инициали-

зации.

Тестовая утилита FIO запускалась из вирту-

альной ОС AlmaLinux 9. Для работы с виртуаль-

ным диском использовался драйвер диска VirtIO,

наиболее производительный из драйверов вир-

туальных дисков в системе QEMU. Применение

данного драйвера не добавляет накладных рас-

ходов эмуляции протокола обмена по шинам

SCSI или SATA.

Основной результат тестов, приведенных в

таблице 1, состоит в том, что использование

файлового кэша позволяет ускорить в 2.36 раза

скорость ввода-вывода SSD-накопителей в одно-

потоковом синхронном режиме. Из данных таб-

лицы следует, что ускоряются не только опера-

ции чтения, что очевидно при кэшировании, но

и операции записи. Приведенные в таблице зна-

чения задержки операций (последние три

строки) означают полное время выполнения опе-

рации от ее запуска до получения подтвержде-

ния об окончании. Поскольку тесты FIO выпол-

нялись с опцией -sync=1, которая форсировала

вызов синхронизации данных после каждой за-

писи, то получение подтверждения означало, что

данные действительно записаны в постоянную

память SSD-устройства. Из последней строки

видно, что среднее время записи уменьшилось

почти в 2 раза, тогда как минимальное время за-

писи почти не изменилось. Это позволяет пред-

положить, что при интенсивном использовании

файлового кэша в очередь запросов SSD-устрой-

ства попадают преимущественно операции за-

писи, и в этом режиме устройство реже останав-

ливается для выполнения внутренних операций,

таких, как сборка мусора и планирование равно-

мерного использования ресурса перезаписи

ячеек памяти.

Таблица 1. Результаты тестирования смешанной нагрузки ввода-вывода на SSD-накопителях

Тест Кэш пуст
Кэш предзагру-

жен
Ускорение

Многопотоковый асинхронный режим

Чтение, операций в секунду 65200 73700 1.13

Запись, операций в секунду 16300 18400 1.13

Всего, операций в секунду 81500 92100 1.13

Минимальная задержка записи, µсек 2040 2080 1.02

Медианная задержка записи, µсек 16710 14350 1.16

Средняя задержка записи, µсек 17975 15760 1.14

Однопотоковый синхронный режим

Чтение, операций в секунду 2090 4900 2.34

Запись, операций в секунду 510 1240 2.43

Всего, операций в секунду 2600 6140 2.36

Минимальная задержка записи, µсек 348 346 1.01

Медианная задержка записи, µсек 502 470 1.07

Средняя задержка записи, µсек 1010 535 1.89

Данный эффект противоречит популярным

рекомендациям, согласно которым использовать

файловый кэш по отношению к SSD-накопите-

лям не имеет смысла и снижает производитель-

ность ввода-вывода. Опровержение этих реко-

мендаций открывает различные возможности

оптимизации подсистемы ввода-вывода. Напри-

мер, заметного ускорения можно ожидать при

добавлении высокоскоростного NVMe- или

PCIe-накопителя небольшого объема в качестве

кэша системы логических томов LVM (основан-

ного на модуле ядра dm-cache [5]). Данный кэш

будет работать в режиме сквозной записи, что не

снизит надежность всей системы, но при этом

ускорится работа виртуальных дисков, располо-

женных на этом томе.

В случае многопотоковой асинхронной

нагрузки наблюдаемое ускорение операций со-

ставляет всего 13%. В этих тестах SSD-устрой-

ство показывает значительно большую произво-

дительность, чем в однопотоковом тесте с син-

хронной записью. Но среднее время выполнения

операции записи в этом тесте тоже выше более

чем 15 раз, нежели в синхронном режиме. Асин-

хронная многопотоковая нагрузка — это тот тип

нагрузки, для которого оптимизирована внут-

ренняя программа SSD-устройства, поэтому в

таком режиме устройство показывает наиболь-

шую производительность. Кроме того, по-

скольку тестируемая модель SSD-накопителей,

согласно ее спецификации, оптимизирована для

операций чтения, то основное время в этом тесте

расходовалось на запись данных, и использова-

ние файлового кэша не дало заметного прироста

производительности.

28

Таблица 2. Результаты тестирования смешанной нагрузки ввода-вывода на HDD-накопителях

Тест Кэш пуст
Кэш предзагру-

жен
Ускорение

Многопотоковый асинхронный режим

Чтение, операций в секунду 450 852 1.89

Запись, операций в секунду 113 211 1.87

Всего, операций в секунду 563 1063 1.89

Минимальная задержка записи, µсек 261940 48200 5.43

Медианная задержка записи, µсек 1166015 677330 1.72

Средняя задержка записи, µсек 1145420 624950 1.83

Однопотоковый синхронный режим

Чтение, операций в секунду 53 145 2.74

Запись, операций в секунду 13 35 2.69

Всего, операций в секунду 66 180 2.73

Минимальная задержка записи, µсек 6745 4470 1.51

Медианная задержка записи, µсек 37770 21365 1.77

Средняя задержка записи, µсек 40108 26930 1.52

Из таблицы 2 видно, что для HDD-устройств

наблюдается 2.7x и 1.9x кратное ускорение для

синхронной и асинхронной работы, соответ-

ственно. Но причины ускорения от использова-

ния кэширования в случае HDD отличаются от

случая SSD. Скорость доступа к данным у меха-

нических дисковых накопителей значительно

ниже, чем у твердотельных SSD-накопителей и в

основном определяется скоростью точного пози-

ционирования блока магнитных головок к до-

рожке с данными. Следовательно, операции чте-

ния или записи произвольного блока данных в

механическом дисковом накопителе должны

иметь одинаковые средние времена выполнения

(если не рассматривать устройства с «черепич-

ной» записью — Shingled Magnetic Recording,

SMR), тогда как запись данных SSD-устрой-

ством выполняется медленнее чтения. Также

можно считать, что в тестах с пустым кэшем все

операции чтения выполняются непосредственно

из накопителя (так как диск большой и случай-

ное чтение за время теста имеет незначительное

количество повторно прочтенных блоков), а в те-

стах с полностью загруженным кэшем все опе-

рации чтения выполняются из кэша. Поэтому в

асинхронном многопотоковом режиме можно

было бы ожидать 5-кратного увеличения количе-

ства операций записи, так как все операции чте-

ния выполняются из кэша, а их в смешанной

нагрузке 80%. Но наблюдаемое увеличение

меньше 5-кратного — от 113 до 211 операций в

секунду. Это расхождение частично объясняется

тем, что в массиве RAID10 операции чтения мо-

гут выполняться параллельно, а операции за-

писи — нет. Если учесть эту поправку, то увели-

чение скорости записи должно быть не 5-крат-

ным, а 3-кратным. Но поскольку 211 операций

записи в секунду приблизительно соответствуют

оценке пиковой производительности произволь-

ного доступа для HDD-накопителя, вопрос ско-

рее в том, почему в первой колонке (тест с пу-

стым кэшем) удалось выполнить 563 операции в

секунду. Вероятно, в режиме смешанной асин-

хронной нагрузки жесткий диск имеет больше

возможностей по оптимизации плана выполне-

ния запросов и более успешно использует внут-

реннюю кэш-память. В тесте синхронного до-

ступа небольшое количество операций записи

(35 операций/сек) совпадало с результатами ана-

логичного теста на сервере виртуализации.

HDD-накопители со скоростью вращения 7200

об/мин выполняют одиночную операцию записи

за среднее время 10-15мсек, что соответствует

67-100 операциям/сек. Но в режиме RAID10 тре-

буется ожидать подтверждения записи двух ко-

пий данных от двух устройств, что увеличивает

среднее время операции. Кроме того, тестируе-

мые HDD-накопители находились в эксплуата-

ции более 8 лет, и их высокий износ мог приве-

сти к увеличению времени точного позициони-

рования блока головок.

4. Программа динамической

оптимизации кэширования

виртуальных дисков

Приведенные выше результаты тестов де-

монстрируют возможность ускорения ввода-вы-

вода за счет применения файлового кэша для

виртуальных дисков в случае своевременной за-

грузки необходимых данных.

Кэширование данных открытых файлов вы-

полняется в рамках работы более общего меха-

низма управления использованием страниц па-

мяти. Традиционно ядро Linux создает два

списка страниц памяти для алгоритма удержа-

29

ния в ОЗУ наиболее часто используемых стра-

ниц (least-recently-used, LRU). Страницы, к кото-

рым недавно осуществлялся доступ, помеща-

ются в начало списка «активных» страниц. Стра-

ницы из хвоста этого списка удаляются, если к

ним давно не обращались, и помещаются в

начало списка «неактивных» страниц. Когда ка-

кой-либо процесс повторно обращается к «неак-

тивной» странице, она помещается обратно в

список «активных» страниц. В случае дефицита

памяти ядро удаляет первыми страницы из хво-

ста списка «неактивных» страниц. Если список

«неактивных» страниц становится короче поло-

вины длины списка «активных» страниц, то вы-

полняется перераспределение страниц этих

списков для сохранения указанного соотноше-

ния длин списков. Следует отметить, что для

определения факта использования страниц па-

мяти применяется бит Accessed в структуре Page

Table Entry (PTE), который автоматически вы-

ставляется устройством управления памятью

(MMU).

Таким образом, алгоритм LRU приближенно

решает задачу оценки вероятности будущего до-

ступа к ранее использованной странице памяти,

почти не задействуя для этого вычислительные

ресурсы. В современных версиях ядра Linux кар-

тина усложняется, если имеется несколько про-

цессоров с неоднородной архитектурой памяти

(non-uniform-memory-access, NUMA) или при-

меняется механизм изоляции ресурсов cgroups

— тогда вышеописанные списки создаются для

каждого процессора и каждой группы процессов

cgroups. Подробное описание механизма управ-

ления памятью, список соответствующих ему

параметров и методов диагностики содержится

в документации ядра Linux [6].

Отметим следующие недостатки общеси-

стемного файлового кэша:

• он универсален — у пользователя нет воз-

можности выделить больше памяти для опреде-

ленных файлов;

• он имеет небольшую гранулярность, рав-

ную размеру страницы памяти (4096 байт), при

этом нет возможности задать больший размер

блоков, чтобы данные загружались «по ассоциа-

ции».

Частично решить задачу распределения при-

оритетов в использовании оперативной памяти

позволяет современный механизм изоляции ре-

сурсов cgroups v2, имеющий параметры

memory.low и memory.high для каждой группы

процессов. Эти параметры влияют на принятие

решений об увеличении или уменьшении коли-

чества страниц памяти, необходимых данной

группе процессов. В среде виртуализации

Libvirt/QEMU/KVM каждая виртуальная ОС по-

мещается в отдельную группу cgroup, поэтому

такой способ оптимизации вполне возможен.

Однако, этот метод требует точной оценки по-

требности в оперативной памяти всех виртуаль-

ных ОС на сервере и не гарантирует успеха, по-

скольку указываются рекомендуемые размеры

всей памяти для cgroup, что не обязательно при-

ведет к более активному кэшированию содержи-

мого виртуального диска, скорость работы кото-

рого требуется увеличить.

Еще одним параметром, косвенно влияющим

на работу файлового кэша, является размер окна

опережающего чтения (read-ahead size), который

можно задать либо для блочного устройства на

сервере виртуализации, либо внутри виртуаль-

ной ОС. Но увеличение этого параметра не все-

гда приводит к желаемому результату, так как

оно повышает количество прочитываемых и

удерживаемых в кэше данных, не все из которых

оказываются нужны.

С другой стороны, задача приоритетного

удержания часто используемых данных вирту-

альных дисков допускает и более простое реше-

ние. Так, ядро Linux имеет системный вызов

mincore, который возвращает список находя-

щихся в файловом кэше блоков указанного

файла. К этому системному вызову обращается

утилита vmtouch [7], которая в зависимости от

указанных параметров либо сообщает пользова-

телю, какая часть интересующего его файла

находится в кэше, либо загружает и удерживает

весь этот файл или некоторую его часть в кэше.

Попытки применить утилиту vmtouch для удер-

жания в кэше всего виртуального диска или не-

которой его части обычно не реалистичны, так

как часть данных диска, которая будет интен-

сивно использоваться, заранее неизвестна, а раз-

мер всего диска, как правило, превосходит раз-

мер оперативной памяти сервера. Исключением

служит ситуация, когда для ускорения работы

некоторого приложения в виртуальной ОС со-

здается отдельный виртуальный диск неболь-

шого размера, а затем файл этого диска полно-

стью удерживается в кэш-памяти утилитой

vmtouch. Развитием утилиты vmtouch является

утилита vmprobe [8], которая также имеет функ-

ции сохранения «моментального снимка» состо-

яния кэш-памяти применительно к указанному

файлу и последующего восстановления состоя-

ний кэш-памяти из сохраненных таким образом

«снимков». Эти функции утилиты vmprobe поз-

воляют, например, зафиксировать определенное

состояние сервера базы данных, часто называе-

мое «прогретым» состоянием, и в дальнейшем

при старте сервера быстрее достигать этого со-

стояния, форсируя загрузку необходимых дан-

ных в файловый кэш. Тем не менее, утилиты

vmtouch и vmprobe не проводят динамического

30

анализа использования файлового кэша, и по-

этому не способны перенастраивать множество

загруженных страниц данных в реальном вре-

мени.

Для более гибкого управления кэшированием

виртуальных дисков авторами данной статьи

была разработана утилита vmdisktouch, которая

является развитием утилиты vmtouch и выпол-

няет следующие действия:

• периодически делает системный вызов

mincore и составляет карту загруженных в фай-

ловый кэш блоков виртуального диска;

• находит области диска, где недавно вы-

полнялось много операций чтения и записи, и

помечает их как области, которые имеет смысл

удерживать в кэше;

• удерживает в кэше данные выбранных об-

ластей виртуального диска;

• выводит «тепловую карту» файлового

кэша с обозначением всех удерживаемых на дан-

ный момент в кэше блоков (в том числе недавно

перезаписанных) и областей.

Утилита написана на языке Python с исполь-

зованием библиотек NumPy и SciPy для обра-

ботки массивов данных, библиотек mmap и

fincore для работы в виртуальной памятью си-

стемы Linux, и библиотеки Pillow для вывода

графических PNG файлов. Функции данной ути-

литы дают администратору сервера виртуализа-

ции возможность наблюдать за использованием

файлового кэша по отношению к виртуальным

дискам и выбирать оптимальный режим динами-

ческой загрузки часто используемых областей

виртуального каждого диска.

5. Алгоритм работы утилиты

vmdisktouch

Чтобы определить часто используемые обла-

сти виртуального диска, утилита vmdisktouch

применяет к битовой карте блоков файлового

кэша операцию сглаживания (фильтр Гаусса) с

заданной дисперсией и амплитудой. Получив-

шаяся функция обновляет более медленно меня-

ющуюся функцию, в которой накапливается экс-

поненциально затухающее среднее значение.

Последнюю функцию можно интерпретировать

как функцию интенсивности доступа или «теп-

ловую карту» использования виртуального

диска. Она представляет собой приближение к

функции плотности вероятности событий ввода-

вывода в массиве блоков данных виртуального

диска. Далее в массиве этой функции выделя-

ются сегменты блоков данных, в которых значе-

ния превышают некоторый порог. Эти сегменты

затем становятся областями, которые будут удер-

живаться в файловом кэше.

Поскольку в результате работы этого алго-

ритма все блоки найденных областей попадают

в кэш, их биты принудительно обнуляются перед

применением операции сглаживания. Это вы-

ключает положительную обратную связь, кото-

рая иначе привела бы к монотонному распро-

странению этих областей на все пространство

блоков диска. Кроме того, обнуление этих битов

приводит к постепенному уменьшению функции

в данном регионе, поэтому удерживаемая в кэше

область данных через некоторое время перестает

удерживаться, но только если в этой области не

было большого числа операций записи данных,

которые также увеличивают значения функции

(см. ниже). Такое динамическое переопределе-

ние множества областей, удерживаемых в кэш-

памяти, помогает находить регионы диска, в ко-

торых наблюдается высокая интенсивность опе-

раций ввода-вывода.

Для обнаружения операций записи, выполня-

емых виртуальной ОС, утилита периодически

прочитывает и вычисляет контрольные суммы

блоков данных удерживаемых в файловом кэше

областей. Перезапись данных виртуального

диска сопровождается обновлением содержи-

мого файлового кэша, поэтому утилита обнару-

жит измененные контрольные суммы и пометит

блоки как перезаписанные. Утилита не может

обнаруживать изменение в остальных блоках

данных, поскольку само событие их чтения по-

влияло бы на работу файлового кэша и заставило

продолжать хранить эти блоки в кэше, часто без-

основательно.

Согласно логике данного алгоритма, утилита

в начале своей работы наблюдает за картой за-

груженных в кэш блоков данных и находит обла-

сти с высокой плотностью таких блоков. Затем

наиболее значимые области выбираются для их

полной загрузки в файловый кэш. Далее в про-

цессе работы поступает информация о перезапи-

сываемых блоках и добавляет информацию об

областях, где данные не только читаются, но и

перезаписываются. Эти области получают

наибольший приоритет и дольше удерживаются

в файловом кэше.

Утилита vmdisktouch принимает следующие

параметры:

• имя файла виртуального диска;

• максимальный размер данных для за-

грузки в файловый кэш;

• минимальное значение свободной обще-

системной памяти, при котором утилите разре-

шено загружать в кэш страницы памяти;

• длительность цикла работы утилиты;

• параметры амплитуды и ширины Гаус-

сова фильтра для карты блоков файлового кэша

и отдельно для карты перезаписанных блоков;

31

• коэффициент затухания для экспоненци-

ального среднего значения функции интенсив-

ности доступа;

• порог значения функции интенсивности

доступа для определения областей, загружаемых

в файловый кэш;

• имена PNG-файлов, в которые выводятся

два изображения: «тепловой карты» для функ-

ции интенсивности и изображение, где точно

обозначены блоки данных, загруженные в фай-

ловый кэш;

• параметры вывода изображения: число

блоков на пиксел, соотношение сторон, и мас-

штаб изображения.

Обязательными параметрами являются

только первые два, для остальных же утилита

выбирает значения, близкие к оптимальным и

выбранные на основании опыта ее применения.

При обновлении множества удерживаемых в

кэше областей виртуального диска утилита ис-

пользует приоритетную очередь, в которой зна-

чение приоритета — сумма функции интенсив-

ности доступа. Это обеспечивает оптимальность

выбора таких областей, если загрузить все

найденные области не позволяет ограничение на

общий размер (второй параметр утилиты).

Настройка остальных параметров алгоритма

утилиты устанавливает режим работы утилиты.

Например, с помощью амплитуды фильтра для

перезаписанных блоков можно задать более вы-

сокий приоритет тем областям данных виртуаль-

ного диска, где часто выполняются операции за-

писи. Коэффициент затухания функции и дли-

тельность цикла определяют скорость перена-

стройки загруженных в кэш областей данных.

За работой утилиты удобно наблюдать, от-

крыв PNG-файл изображения «тепловой карты»

виртуального диска. Многие программы про-

смотра изображений в системе Linux отслежи-

вают изменение содержимого файла и обнов-

ляют картинку, что дает эффект отображения в

режиме реального времени. Для отрисовки «теп-

ловой карты» используется цветовая палитра,

обозначающая тип блоков данных: синий цвет

соответствует блокам, загруженным по инициа-

тиве утилиты vmdisktouch, зеленый цвет озна-

чает загрузку по инициативе виртуальной ОС,

красным цветом отмечены недавно перезаписан-

ные блоки данных.

6. Заключение

Разработанная авторами утилита

vmdisktouch позволяет более интенсивно кэши-

ровать данные виртуального диска и выбирать

для этого преимущественно те области диска,

которые участвуют одновременно в чтении и за-

писи данных. Оказывается, что такое кэширова-

ние увеличивает также скорость операций за-

писи SSD-накопителей, особенно в синхронном

режиме. Использование данной утилиты не

нарушает функционирование виртуальных ОС,

поскольку ее работа заключается только в

опросе состояния файлового кэша системы

Linux и чтении данных виртуальных дисков.

Недостатком алгоритма работы утилиты

vmdisktouch является то, что одно лишь наблю-

дение за блоками виртуального диска, находя-

щимися в файловом кэше, делает затруднитель-

ным определение причины попадания этих бло-

ков в кэш. Алгоритм должен запоминать блоки,

загрузка которых была осуществлена по его ини-

циативе, и исключать их из дальнейшего дина-

мического анализа, иначе области распростра-

нятся постепенно на весь виртуальный диск.

При этом теряется информация о том, понадоби-

лись ли некоторые из этих блоков, т.е. произво-

дились ли операции чтения этих блоков данных

со стороны виртуальной ОС. По этой же при-

чине не удается детектировать события записи

блоков вне областей, уже удерживаемых в па-

мяти. Если бы система виртуализации позволяла

наблюдать за событиями и чтения и записи бло-

ков данных виртуального диска, то можно было

бы более точно определять области данных, ре-

комендованные для удержания в кэше.

Дальнейшим развитием функциональности

утилиты vmdisktouch может быть реализация

следующих возможностей:

• отслеживание перезаписанных блоков

данных с помощью карты обновленных блоков

виртуального диска (функция block-dirty-bitmap,

добавленная в QEMU v.2.4). Этот метод позво-

лит получать список всех выполненных опера-

ций записи данных, что увеличит точность ра-

боты утилиты и сэкономит процессорный ре-

сурс;

• временной анализ событий ввода-вывода

с обнаружением закономерностей и предсказа-

нием будущих событий для опережающей за-

грузки блоков данных в файловый кэш.

Работа выполнена в рамках государственного

задания ФГУ ФНЦ НИИСИ РАН по теме

№ FNEF-2024-0001 «Создание и реализация до-

веренных систем искусственного интеллекта,

основанных на новых математических и алго-

ритмических методах, моделях быстрых вычис-

лений, реализуемых на отечественных вычисли-

тельных системах» (1023032100070-3-1.2.1).

32

A Dynamic Analysis and Optimization of I/O in

the GNU Linux/QEMU/KVM Virtualization

Environment

A.B. Betelin, G.A. Prilipko, A.G. Prilipko, S.G. Romanyuk, D.V. Samborskiy

Abstract. In this paper we describe results of virtual disk I/O performance tests in GNU Linux/QEMU/KVM

environment and propose optimization methods that improve use of the system page cache. The authors have developed

a utility for dynamic analysis and optimization of virtual disk usage. Testing has shown that this utility can provide

more than 2x acceleration for mixed I/O workloads on SSDs.

Keywords: virtualization, I/O, QEMU, KVM, Linux, vmtouch, vmprobe, mincore

Литература

1. Сайт "QEMU, the FAST! processor emulator". https://www.qemu.org (дата обращения

06.03.2024).

2. Сайт проекта KVM. https://www.linux-kvm.org (дата обращения 06.03.2024).

3. А.Б. Бетелин, И.Б. Егорычев, А.А. Прилипко, Г.А. Прилипко, С.Г. Романюк, Д.В. Самборский.

Настройка и оптимизация системы ввода-вывода в среде виртуализации GNU

Linux/QEMU/KVM/Libvirt. «Труды НИИСИ РАН», т.9 (2019), № 5, 119–129.

4. Сайт документации утилиты Flexible I/O tester (FIO). https://fio.readthedocs.io/en/latest (дата об-

ращения 06.03.2024).

5. Сайт документации ядра Linux, раздел "Device Mapper. Cache". https://www.kernel.org/doc/Doc-

umentation/device-mapper/cache.txt (дата обращения 06.03.2024).

6. Сайт документации ядра Linux, раздел "Memory Management". https://www.ker-

nel.org/doc/html/latest/admin-guide/mm (дата обращения 06.03.2024).

7. Сайт утилиты vmtouch. https://hoytech.com/vmtouch (дата обращения 06.03.2024).

8. Сайт утилиты vmprobe. https://vmprobe.com/intro (дата обращения 06.03.2024).

9. Стандарт POSIX.1-2017. The Open Group Base Specifications Issue 7, 2018 edition IEEE Std

1003.1-2017.

