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Аннотация. Для формирования матрицы проводимостей массива переменных резисторов необходима 
процедура произвольного изменения проводимостей резисторов массива при использовании ограниченного 
числа управляющих сигналов — напряжений на проводниках структуры типа кроссбар. Поскольку число 
проводников значительно меньше числа резисторов, такая процедура должна быть многошаговой. На каждом 
шаге происходит изменение проводимостей целевых резисторов, число которых не больше числа управляющих 
сигналов. При этом неизбежно меняются проводимости и некоторых нецелевых резисторов. Соответствующие 
изменения необходимо компенсировать. В работе рассмотрена процедура записи с использованием в качестве 

управляющих сигналов высокочастотных кусочно-постоянных сигналов. На основе анализа с использованием 
модели простого резисторного элемента показана возможность формирования произвольной (в известных 
пределах) матрицы проводимостей. На каждом шаге формируется (изменяется) строка или столбец матрицы. 
Обсуждаются условия, обеспечивающие выполнимость и удобство такой процедуры.  
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1. Введение 

Большие резисторные матрицы могут стать 

основными блоками нейроморфных систем, 

поскольку они позволяют реализовать вектор-

матричное умножение – наиболее трудоёмкую 

операцию нейровычислений. Элементы 
матрицы-множителя определяются 

проводимостями соответствующих резисторов 

[1]. Чтобы резисторный массив обеспечивал 

умножение на разные матрицы, резисторы 

должны быть переменными с возможностью 

управления проводимостями резисторов. 

Наибольшую популярность получили 

переменные резисторы, изменяющие своё 

сопротивление под действием протекающего 

тока («мемристоры») [2-4] благодаря своей 

простоте, компактности и энергоэффективности. 

Для больших массивов подобных элементов 
формирование матрицы проводимостей – 

нетривиальная задача [1,5]. Дело в том, что 

организовать индивидуальный доступ к 

каждому резистору нереально из-за огромного 

числа элементов. В регулярных структурах типа 

кроссбара каждый резистор соединяет два 

проводника, к каждому из которых 

присоединено много резисторов. Число 

управляющих сигналов – напряжений на 

проводниках – много меньше числа резисторов. 

Поэтому необходимо пошаговое формирование 
матрицы проводимостей, причём на каждом 

шаге обычно формируется строка или столбец 

матрицы проводимостей. Использование для 

записи постоянных (точнее, однополярных) 

сигналов-напряжений встречает значительные 

трудности – при воздействии на целевые 

резисторы структуры изменяются проводимости 
и многих нецелевых резисторов. Знак этих 

нежелательных изменений разный для разных 

резисторов, из-за чего эти изменения трудно 

компенсировать. Часто эти трудности пытаются 

обойти, предполагая пороговый характер 

механизма изменения проводимости [2,3,6]. 

Однако на практике подобный трюк не работает 

– природа не всегда следует желаниям учёных. 

Можно добиться легко компенсируемых 

изменений в нецелевых резисторах, если для 

записи информации использовать переменный 

(высокочастотный) сигнал [7]. В работах [8,9] 
были рассмотрены методы записи информации в 

массив переменных резисторов типа кроссбар с 

помощью высокочастотных гармонических 

сигналов. Показано, что для случая 

однонаправленных переменных резисторов 

использование знакопеременных 

гармонических напряжений в качестве 

управляющих сигналов позволяет записывать 

произвольную (в определённых пределах) 

матрицу проводимостей. 

Помимо гармонических управляющих 
сигналов можно использовать другие 

периодические высокочастотные сигналы. 

С практической точки зрения такие сигналы 

должны быть достаточно простыми для 

формирования. Среди таких сигналов 

выделяются кусочно-постоянные сигналы, 
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которые могут иметь всего несколько значений. 

Применение именно таких сигналов для 

формирования матрицы проводимостей 

рассмотрено в настоящей статье. Предполагаем, 

что изменение состояния переменного резистора 

в результате воздействия одного периода 

управляющего напряжения невелико, для записи 

информации (изменения проводимостей 

резисторов) требуется много периодов сигнала. 

Такое предположение позволяет называть 
сигнал высокочастотным. Среди значений 

сигналов должны быть как положительные, так 

и отрицательные, в противном случае имеем 

однополярный сигнал, близкий по своему 

действию к постоянному сигналу. При анализе 

предполагаем, что переменный резистор 

описываются моделью простого резисторного 

элемента [10]. 

2. Уравнения записи 

Проводимость G и сопротивление R=1/G 

простого резисторного элемента выражается 

через единственную переменную состояния x: 

G=G(x). Считаем, что переменная состояния 
меняется от 0 до 1. Состояние x=0 – основное 

состояние – это состояние с максимальным 

сопротивлением, а состояние x=1 соответствует 

минимальному сопротивлению резистора. 

Изменение переменной состояния описывается 

уравнением [10] 

 
𝑑𝑥

𝑑𝑡
= 𝐹(𝑥, 𝑢),  (1) 

где u – напряжение на резисторе. Заметим, что в 

общем случае правая часть уравнения (1) 

зависит как от напряжения u, так и от тока 

резистора I. Однако закон Ома (справедливость 

которого подразумевает использование термина 

резистор) 

𝑢 = 𝑅(𝑥)𝐼  (2) 

позволяет выразить I через u и x, что даёт 

уравнение (1). 

Запишем функцию F () в виде 

𝐹(𝑥, 𝑢) = 𝐹0(𝑥) + 𝐹+(𝑥, 𝑢) + 𝐹−(𝑥, 𝑢),       (3) 

где слагаемое 𝐹0(𝑥) = 𝐹(𝑥, 𝑢 = 0) описывает 

спонтанную (в отсутствие сигнала) релаксацию 

состояния резистора к основному состоянию, 

слагаемое 𝐹+(𝑥, 𝑢) = 𝜃(𝑢)(𝐹(𝑥, 𝑢) − 𝐹0(𝑥))  
описывает тенденцию увеличения переменной 
состояния x при положительном напряжении, а 

слагаемое 𝐹−(𝑥, 𝑢) = 𝜃(−𝑢)(𝐹(𝑥, 𝑢) − 𝐹0(𝑥))  

описывает тенденцию уменьшения переменной 

x (ускоренную релаксацию) при отрицательном 

напряжении. (Здесь 𝜃(𝑥) – функция Хевисайда). 

Если характер зависимости величины F+(x,u) 

(F-(x,u)) от x слабо зависит от u, можно провести 

факторизацию: 

𝐹+(𝑥, 𝑢) = 𝐹𝑥
+(𝑥)𝐹𝑢

+(𝑢), 𝐹−(𝑥, 𝑢) = 
= 𝐹𝑥

−(𝑥)𝐹𝑢
−(𝑢),   (4) 

в результате получаем следующее 

представление функции F: 

𝐹(𝑥, 𝑢) = 𝐹0(𝑥) + 𝐹𝑥
+(𝑥)𝐹𝑢

+(𝑢) + 
+𝐹𝑥

−(𝑥)𝐹𝑢
−(𝑢)  (5) 

Функции одной переменной 

𝐹0(𝑥), 𝐹𝑥
±(𝑥), 𝐹𝑢

±(𝑢) наряду с функцией G(x) 

назовём характеристическими функциями 
резистора. 

Характеристические функции 𝐹𝑥
±(𝑥), 𝐹𝑢

±(𝑢) 

не задаются однозначно формулами (4). Будем 

считать, что функции 𝐹𝑥
±(𝑥) нормированы на 

единицу, то есть равны 1 в характерных точках. 

(в одной из граничных точек). 

Характеристические функции 𝐹0(𝑥), 𝐹𝑥
±(𝑥) 

определяют скорости записи/стирания в 

зависимости от текущего состояния резистора. 

Естественно принять, что они непрерывные на 

отрезке [0,1], положительные в интервале (0,1), 

и выполняются соотношения 

𝐹0(0) = 0, 𝐹𝑥
+(0) = 1, 𝐹𝑥

+(1) = 
=0, 𝐹𝑥

−(0) = 0, 𝐹𝑥
−(1) = 1 (6) 

Характерный пример таких функций: 

 𝐹0(𝑥) = 𝑓𝑥𝛾0(1 − 𝑥)𝛾1 , 𝐹𝑥
+(𝑥)= 

= (1 − 𝑥)𝛽+ , 𝐹𝑥
−(𝑥) = 𝑥𝛽− ,  (7) 

причём показатели 0, +, - положительные, 

а показатель 1 неотрицательный, f – 

положительный коэффициент. Заметим, что при 

1>0 имеем F0(1)=0, а при 1=0  F0(1)=1. 

Характеристические функции 𝐹𝑢
+(𝑢), 𝐹𝑢

−(𝑢) 

задают зависимости скоростей изменения 

состояния х от напряжения на резисторе при 

положительных и отрицательных напряжениях 

соответственно. Наиболее типичный вид 

функций 𝐹𝑢
±(𝑢) – степенной на 

соответствующих полуосях: 

𝐹𝑢
+(𝑢) = 𝐴+𝜃(𝑢)𝑢𝛼+ , 𝐹𝑢

−(𝑢) = 
= −𝐴−𝜃(−𝑢)(−𝑢)𝛼−  (8) 

с положительными коэффициентами A± и 

показателями ±. 

Пусть на переменный резистор подается 

периодическое кусочно-постоянное напряжение 

u(t). Обозначим uk , k=1,…,K – значения 

напряжения, а Tk – времена действия 

соответствующих значений в течение одного 
периода T. Изменение состояния резистора за 

один период управляющего сигнала 

(напряжения) согласно уравнению (1) с учётом 

формулы (3) можно записать в виде 

𝑥(𝑡 + 𝑇) − 𝑥(𝑡) = 𝐹0(𝑥)𝑇 + ∑ 𝐹+(𝑥, 𝑢𝑘)𝑇𝑘

𝑘,𝑢𝑘>0

+ 

+∑ 𝐹−(𝑥, 𝑢𝑘)𝑇𝑘𝑘,𝑢𝑘<0 .   (9) 

Нас интересуют медленные (усреднённые по 

периоду сигнала) изменения состояния 

резистора (малыми колебаниями переменной 

состояния внутри периода пренебрегаем из-за их 

малости при действии высокочастотного 

сигнала). Для таких изменений получаем 
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уравнение 
𝑑𝑥

𝑑𝑡
=

𝑥(𝑡+𝑇)−𝑥(𝑡)

𝑇
= 𝐹0(𝑥) +

+ ∑ 𝐹+(𝑥, 𝑢𝑘)𝜏𝑘𝑘,𝑢𝑘>0 + ∑ 𝐹−(𝑥, 𝑢𝑘)𝜏𝑘𝑘,𝑢𝑘<0  (10) 

где k=Tk/T – временная доля ненулевого 

значения напряжения uk. 

Уравнение (10) получено без использования 

предположения о факторизации (4). Напомним, 

что при использовании гармонического сигнала 

[7] факторизация необходима для получения 

рабочего уравнения. В рассматриваемом случае 
при условии факторизации уравнение записи 

(10) можно записать в виде 

     
𝑑𝑥

𝑑𝑡
= 𝐹0(𝑥) + 𝐹𝑥

+(𝑥)𝑀+ + 𝐹𝑥
−(𝑥)𝑀−,     (11) 

где 𝑀+   =   ∑ 𝐹𝑢
+(𝑢𝑘)𝜏𝑘𝑘,𝑢𝑘>0 , 𝑀−  =

=  ∑ 𝐹𝑢
−(𝑢𝑘)𝜏𝑘𝑘,𝑢𝑘<0  – величины, 

характеризующие интенсивность воздействия 

положительных и отрицательных напряжений 

соответственно. 
Второе слагаемое в правой части уравнения 

(10) или (11) положительное, а первое и второе 

слагаемые отрицательные. Поэтому правая 

часть уравнений (10), (11) может быть как 

положительной, так и отрицательной. С учётом 

свойств (6) характеристических функций 

получаем, что при x=0 правая часть уравнения 

(11) положительная, а при x=1 – отрицательная. 

Это означает, что уравнение стационарной точки 

уравнения (11) 

 𝑃(𝑥) = 0,  (12) 

где P(x) – правая часть уравнения (11) (или (10) 

в более общем случае), обязательно имеет 

решение внутри интервала (0,1). При 

реалистических (не слишком экзотических) 

характеристических функциях это решение 

единственное. Обозначим его xst. При x<xst 

согласно (11) имеем dx/dt>0, а при x>xst имеем 

dx/dt<0. Уравнение (11) описывает монотонное 

приближение переменной состояния x к 

стационарной точке xst. Скорость движения 

равна P(x). Эту скорость характеризует 
эффективность записи с помощью кусочно-

постоянного высокочастотного сигнала. 

Уравнение стационарной точки (12) для 

уравнения (11) можно записать в виде 

𝐹𝑥
+(𝑥)𝑀+ = −𝐹0(𝑥) − 𝐹𝑥

−(𝑥)𝑀−. (13) 

Обычно запись информации осуществляется 

со скоростями, большими по сравнению со 

скоростью спонтанной релаксации. При этом 

можно пренебречь членом F0(x) в уравнении 

записи и, следовательно, в уравнении 
стационарной точки. В результате получим 

уравнение стационарной точки вида 

 
𝐹𝑥

−(𝑥)

𝐹𝑥
+(𝑥)

=
𝑀+

−𝑀−.  (14) 

При принятых разумных предположениях 

левая часть уравнения (14) неограниченно 

увеличивается от 0 при изменении переменной x 

от 0 до 1. Правая часть — положительное число 

для заданного сигнала u(t). Значение отношения 

𝜇 = 𝑀+ (−𝑀−)⁄ = 𝑀+ |𝑀−|⁄   определяет 

положение стационарной точки. При 0 xst0, 

а при ∞ xst. Обычно зависимость  xst() — 

монотонно возрастающая. 

Для характеристических функций (7) 

уравнение (14) принимает вид 
𝑥𝛽−

(1−𝑥)𝛽+
= 𝜇.   (15) 

Это уравнение имеет единственное решение 
в интервале (0,1). Получить явное выражение 

для xst можно только при некоторых 

соотношениях показателей степеней. Так, при 

𝛽+ = 𝛽− = 𝛽 получаем 

𝑥𝑠𝑡 =
𝜇1 𝛽⁄

1+𝜇1 𝛽⁄ .   (16) 

Зависимости xst() при разных значениях +, 

- имеют сходный характер. Это видно из того, 

что при <<1 из формулы (15) следует 𝑥𝑠𝑡 ≈
𝜇1 𝛽−⁄ , а при >>1 имеем 𝑥𝑠𝑡 ≈ 1 − 𝜇−1 𝛽+⁄ . 

Чтобы оценить влияние спонтанной 

релаксации, подставим выражения (7) в 

уравнение (13). Получающееся уравнение 
𝑥𝛽−

(1−𝑥)𝛽+
= 𝜇 −

𝑓

−𝑀− 𝑥𝛾0(1 − 𝑥)𝛾1−𝛽+   (17) 

отличается от уравнения (15) наличием 

дополнительного отрицательного члена в правой 

части, пропорционального отношению 𝑓 |𝑀−|⁄ . 

Влияние этого члена сводится к эффективному 

уменьшению величины , то есть к смещению 

стационарной точки влево (в сторону граничной 

точки x=0). В частности, при 𝛾0 = 𝛽+ = 𝛽− =
𝛽, 𝛾1 = 0получаем простое выражение 

𝑥𝑠𝑡 =
𝜇̂1 𝛽⁄

1+𝜇̂1 𝛽⁄ , где 𝜇̂ =
𝑀+

−𝑀−+𝑓
=

𝜇

1−𝑓 𝑀−⁄
, (18) 

аналогичное выражению (16), но с 

перенормированной величиной . 

На практике запись информации должна 

производиться достаточно быстро, так что в 

процессе записи спонтанная релаксация 

состояния резистора не играет роли. В 
уравнениях (10), (11) можно отбросить первый 

член в правой части. Изменение состояния 

резистора определяется величинами 

𝑀+, 𝑀−(или аналогичными величинами при 

отсутствии факторизации в уравнении (10)). 

Отношение этих величин определяет 

стационарное состояние резистора при действии 

данного управляющего сигнала. 

Как влияют параметры сигнала на величины 

𝑀+, 𝑀−, то есть на процесс записи? К 
параметрам сигнала относятся используемые 

ненулевые уровни напряжения uk, k=1,…,K и 

относительные длительности действия этих 

напряжений k, k=1,…,K. Правые части 

уравнений (10), (11) линейно зависят от 

параметров k, а вот зависимость от уровней 
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напряжения uk может быть нелинейной. При 

этом обычно имеются широкие возможности 

регулировки скорости записи и положения 

стационарной точки. Рассмотрим эти 

возможности на примере простейшего сигнала с 

двумя ненулевыми уровнями напряжения. 

Именно такие сигналы есть смысл применять 

для формирования матрицы проводимостей 

кроссбара. 

3. Простейший управляющий 

сигнал 

Итак, пусть на переменный резистор 

подается периодическое кусочно-постоянное 
напряжение с двумя ненулевыми уровнями, 

один из которых положительный, а другой 

отрицательный. Для наглядности обозначим их 

u+ и u-. Соответствующие относительные 

времена действия обозначим +, -. Уравнение 

(10) здесь принимает вид 

 
𝑑𝑥

𝑑𝑡
= 𝐹0(𝑥) + 𝐹+(𝑥, 𝑢+)𝜏+ + 𝐹-(𝑥, 𝑢-)𝜏-.  (19) 

При фиксированных значениях u+, u- нет 

необходимости предполагать факторизуемость 

функций F+(), F-(). Достаточно знать только их 

зависимость от x при заданном значении второго 

аргумента. Однако, если мы хотим использовать 

сигналы с разными значениями амплитуды, надо 

знать зависимость F+(), F-() от второго 

аргумента. Предполагая справедливость 

разложений (4), приходим к уравнению (11), в 
котором   

𝑀+ = 𝐹𝑢
+(𝑢+)𝜏+, 𝑀- = 𝐹𝑢

-(𝑢-)𝜏-,  (20) 

Величины 𝑀+, 𝑀-пропорциональны 

значениям +, - соответственно, а их 

зависимости от u+, u- задаются 

характеристическими функциями. С помощью 

простейшего сигнала можно определить 

характер этих зависимостей. Для этого надо 

зафиксировать три из четырёх параметров 

сигнала, а один параметр — u+ или u- — 

изменять. Измерение скорости записи при 

разных значениях варьируемого параметра 
позволит определить тип соответствующей 

характеристической функции. 

Одновременное пропорциональное 

изменение уровней u+, u- (при условии 

неизменности их отношения) позволяет 

проверить одинаковость изменения величин 

𝑀+, 𝑀- при изменении амплитуды сигнала. Если 

степенные характеристические функции (8) 

имеют одинаковые показатели степени: +=- , 

отношение  не зависит от амплитуды сигнала, 

и положение стационарной точки практически 

не зависит от амплитуды. Для линейных 

характеристических функций 𝐹𝑢
+(𝑢), 𝐹𝑢

-(𝑢) 

(+=-=1) каждая из величин 𝑀+, 𝑀- зависит 

линейно только от своей комбинации u++ , u--. 

Здесь число параметров сигнала, влияющих на 

процесс записи, сокращается до двух. 

Если мы хотим ещё больше упростить 

управляющий сигнал, надо наложить 

дополнительные ограничения. Для сигнала с 

нулевым средним имеем условие 

𝑢+𝜏+ + 𝑢-𝜏- = 0  (21) 

При наличии такой связи можно говорить о 

сигнале с амплитудой u+ (или -u-), форма 

которого задаётся параметрами +, -. 

Расположение интервалов постоянства внутри 
периода сигнала не имеет значения. В случае 

линейных характеристических функций 

𝐹𝑢
+(𝑢), 𝐹𝑢

-(𝑢) величины 𝑀+, 𝑀- зависят от 

единственной комбинации параметров u++. Это 

не так, если функции 𝐹𝑢
+(𝑢), 𝐹𝑢

-(𝑢) нелинейные 

на соответствующих полуосях. Такое различие 

можно использовать для проверки наличия 

нелинейности характеристических функций. 

Дополнительные ограничения, приводящие к 

упрощению сигнала, выражаются равенствами 

 𝑢- = −𝑢+  (22) 

 𝜏+ = 𝜏-   (23) 

 Заметим, что для сигнала с нулевым средним 

одно из равенств (22), (23) влечёт другое. В 

следующем разделе именно сигналы, 

удовлетворяющие условиям (22), (23), 

используются для формирования матрицы 

проводимостей кроссбара. Для такого сигнала 

имеется всего два независимых параметра, 

определяющих величины 𝑀+, 𝑀-и, 

следовательно, скорость записи (то есть 
скорость изменения проводимости резистора). 

Согласно (19), (20) в данном случае 

𝑃(𝑥, 𝑢0, 𝜏) = 𝐹0(𝑥) + 𝐹+(𝑥, 𝑢0)𝜏 + 
+ 𝐹-(𝑥, −𝑢0)𝜏,   (24) 

𝑀+ = 𝐹𝑢
+(𝑢0)𝜏, 𝑀- = 𝐹𝑢

-(−𝑢0)𝜏, (25) 

𝑃(𝑥, 𝑢0, 𝜏) = 𝐹0(𝑥) + 𝐹𝑥
+(𝑥)𝐹𝑢

+(𝑢0)𝜏 + 
               + 𝐹𝑥

-(𝑥)𝐹𝑢
-(−𝑢0)𝜏,  (26) 

где =+=- – степень заполнения, а u0=u+=-u- – 

амплитуда сигнала. Напомним, что P(x, u0,) – 

правая часть уравнения записи (с учётом 
зависимости от амплитуды сигнала и его 

степени заполнения). Формула (26) записана для 

случая факторизации функций F+(x,u), F-(x,u), а 

формула (24) – для общего случая. Как видим, 

принципиальной разницы между этими 

случаями нет. Для определённости используем 

формулу (26), причём в правой части равенства 

можно опустить первое слагаемое, 

описывающее спонтанную релаксацию. 

4. Процедура формирования 

матрицы проводимостей 

Резистор кроссбара 𝑅𝑗
𝑖соединяет i-ый 
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горизонтальный проводник с j-ым 

вертикальным проводником. На проводники 

подаются потенциалы от источников 

напряжения. Напряжение на резисторе 𝑅𝑗
𝑖равно 

 𝑢𝑗
𝑖 = 𝑉𝑖 − 𝑉𝑗 ,   (27) 

где V i, Vj – потенциалы i-го горизонтального 

и j-го вертикального проводников. 

Пусть на проводники поданы потенциалы: 

 

𝑉𝑖≠𝑘(𝑡) = 0,

𝑉𝑘(𝑡) = 𝑉0𝜎(𝑡 𝑇⁄ ),

𝑉𝑗 (𝑡) = 𝑉0𝜎(𝑡 𝑇⁄ + 𝛿𝑗),

  (28) 

где V0 – амплитуда сигналов, j – фазовые 

сдвиги (0≤j<1), (y) – периодическая кусочно-

постоянная функция с периодом 1, для которой 

 
𝜎(𝑦) = 1,0 < 𝑦 < 1 2⁄ ,

𝜎(𝑦) = −1, 1 2⁄ < 𝑦 < 1
  (29) 

(значения функции в точках разрыва не 

играют роли). Функция (y) – кусочно-

постоянный аналог синуса, её даже можно 

определить с помощью функции sin(): 

 𝜎(𝑦) = 𝑠𝑖𝑔𝑛(sin(2𝜋𝑦))  (30) 

(sign() – функция знака). 

Распределение потенциалов (29) означает, 

что на k-ый горизонтальный проводник подан 

стандартный сигнал, остальные горизонтальные 

проводники заземлены. На вертикальные 
проводники поданы сигналы, получающиеся из 

стандартного сигнала с помощью фазового 

(временного) сдвига. Сдвиг фазы свой для 

каждого вертикального проводника. Резисторы, 

присоединённые к k-му горизонтальному 

проводнику, то есть резисторы k-ой строки, 

оказываются в выделенном положении. Будем 

называть эти резисторы целевыми. 

Распределение напряжений на резисторах 

кроссбара согласно (27), (28) имеет вид 

𝑢𝑗
𝑖≠𝑘(𝑡) = −𝑉0𝜎(𝑡 𝑇⁄ + 𝛿𝑗),

𝑢𝑗
𝑘(𝑡) = 𝑉0(𝜎(𝑡 𝑇⁄ ) − 𝜎(𝑡 𝑇⁄ + 𝛿𝑗)).

 (31) 

На нецелевые резисторы действуют 

простейшие сигналы, удовлетворяющие 

условиям (22), (23). Существенные параметры 

этих сигналов =1/2, u0=V0 одинаковые для всех 

нецелевых резисторов. 

Напряжения на целевых резисторах – также 
простейшие сигналы, удовлетворяющие 

условиям (22), (23). Для них u0=2V0, а вот 

параметр  зависит от фазового сдвига: для 

резистора 𝑅𝑗
𝑘этот параметр равен 

𝜏𝑗 = 𝑚𝑖𝑛(𝛿𝑗 , 1 − 𝛿𝑗).  (32) 

При изменении j от 0 до 1/2 параметр j 

линейно растёт от 0 до 1/2, а при изменении j от 

1/2 до 1 параметр j линейно падает от 1/2 до 0. 

Для получения полного диапазона изменения 

параметра  можно ограничиться половиной 

диапазона изменения фазового сдвига. Считая, 

что 0≤j≤1/2, получаем согласно (32) 

 𝜏𝑗 = 𝛿𝑗 .   (33) 

Запишем формулы для изменения состояний 

резисторов под действием напряжений (31), 

предполагая, что резисторы кроссбара 

одинаковые, выбрано базовое состояние 

резисторов xb, информация записывается в виде 

малых отклонений от базового состояния x-xb. 

С помощью формулы (26) получаем для 
изменений состояний резисторов 

        

𝛥𝑥𝑗
𝑖≠𝑘 = 𝑃(𝑥𝑏 , 𝑉0, 1 2⁄ )𝑡𝑟 =

= (𝐹𝑥
+(𝑥𝑏)𝐹𝑢

+(𝑉0) + 𝐹𝑥
-(𝑥𝑏)𝐹𝑢

-(−𝑉0))
𝑡𝑟

2
,

𝛥𝑥𝑗
𝑘 = 𝑃(𝑥𝑏 , 2𝑉0, 𝛿𝑗)𝑡𝑟 =

= (𝐹𝑥
+(𝑥𝑏)𝐹𝑢

+(2𝑉0) + 𝐹𝑥
-(𝑥𝑏)𝐹𝑢

-(−2𝑉0))𝑡𝑟𝛿𝑗

 (34) 

(tr – время записи). Нецелевые резисторы 

испытывают одинаковое изменение состояния, 

не зависящее от фазовых сдвигов. В отличие от 

них, целевые резисторы изменяют своё 

состояние на величину, пропорциональную 

соответствующему сдвигу фаз, при условии, что 

коэффициент пропорциональности не равен 

нулю. 

Чтобы избавиться от изменения состояний 
нецелевых резисторов, можно выбрать базовое 

состояние совпадающим со стационарным 

состоянием под действием стандартного 

сигнала: xb=xst(u0=V0). При таком выборе x0 

для нецелевых резисторов. Важно, чтобы 

стационарное состояние под действием 

напряжения на целевых резисторах заметно 

отличалось от базового состояния: 

xbxst(u0=2V0). В противном случае изменения 

состояний целевых резисторов будут 

незначительны. Как мы видели в разделе 3, такой 

неблагоприятный случай имеет место при 

условии, что характеристические функции 

𝐹𝑢
+(𝑢), 𝐹𝑢

-(𝑢) изменяются на своих полуосях 

сходным образом – показатели +, - равны друг 
другу для случая степенных характеристических 

функциях. Здесь xst(u0=V0)=xst(u0=2V0) (при 

пренебрежении спонтанной релаксацией), и 

избавиться от смещения состояний нецелевых 

резисторов с помощью выбора базового 

состояния не получится. 

При произвольном выборе базового 

состояния необходимо компенсировать 

изменение состояний нецелевых резисторов. 

Это можно сделать, подав постоянное 

напряжение между всеми горизонтальными и 

всеми вертикальными проводниками: 

𝑉𝑖(𝑡) = 𝑉0,
𝑉𝑗(𝑡) = 0.

   (35) 

Напряжение V0 и время действия этого 

напряжения tr2 (время записи второго этапа) 

должны удовлетворять условию   
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(𝐹𝑥
+(𝑥𝑏)𝐹𝑢

+(𝑉0) + 𝐹𝑥
-(𝑥𝑏)𝐹𝑢

-(𝑉0))𝑡𝑟2 =

= 𝑃(𝑥𝑏 , 𝑉0, 1 2⁄ )𝑡𝑟 =

= (𝐹𝑥
+(𝑥𝑏)𝐹𝑢

+(𝑉0) + 𝐹𝑥
-(𝑥𝑏)𝐹𝑢

-(−𝑉0))
𝑡𝑟

2
.

 (36) 

Полярность постоянного напряжения 
зависит от выбора базового состояния. При 

xb<xst(u0=V0) напряжение V0 должно быть 

отрицательным, а при xb>xst(u0=V0) – 

положительным. 

После двух этапов записи имеем изменения 

состояний резисторов 

𝛥𝑥𝑗
𝑖≠𝑘 = 0,

𝛥𝑥𝑗
𝑘 = (𝐹𝑥

+(𝑥𝑏)𝐹𝑢
+(2𝑉0) +

𝐹𝑥
-(𝑥𝑏)𝐹𝑢

-(−2𝑉0))𝑡𝑟𝛿𝑗 −

−(𝐹𝑥
+(𝑥𝑏)𝐹𝑢

+(𝑉0) + 𝐹𝑥
-(𝑥𝑏)𝐹𝑢

-(−𝑉0))
𝑡𝑟

2
.

 (37) 

В итоге состояния нецелевых резисторов 

остались прежними, а изменения состояний 

целевых резисторов линейно зависят от 

соответствующих фазовый смещений. Полный 

диапазон изменения состояния целевого 

резистора, соответствующий изменению 

фазового сдвига от 0 до 1/2, зависит от 

взаимного расположения состояний xb, 

xst(u0=V0), xst(u0=2V0). В типичном случае  

xb<xst(u0=V0)<xst(u0=2V0) нулевое значение 
изменения состояния для целевого резистора 

находится внутри доступного диапазона x. При 

этом с учётом произвольности выбора времени 

записи tr можно записать любое (небольшое) 

значение x. 

Таким образом, можно осуществить 

произвольные (в разумных пределах) изменения 

состояний резисторов выбранной строки 

кроссбара. Выполняя описанную процедуру для 

разных строк резисторной матрицы, можно 

записать заданную информацию в резисторную 

матрицу – кроссбар. Заметим, что вместо 

построчной записи можно говорить о 

постолбцовой записи. Вообще, названия 

«строки» и «столбцы», как и «горизонтальные» 
и «вертикальные проводники», условные – 

поворот кроссбара на 90 градусов превращает 

горизонтальные проводники в вертикальные, а 

строки в столбцы. 

Можно было бы попытаться изменить на 

одном этапе не одну, а несколько строк матрицы 

проводимостей, подав простейший сигнал не на 

один горизонтальный проводник (как в (28)), а 

на несколько. Такие сигналы могут иметь 

фазовые сдвиги друг относительно друга. 

Однако в этом случае нельзя обеспечить 
произвольные изменения состояний целевых 

резисторов из-за недостаточного количества 

управляющих параметров. Здесь достижимы 

только изменения специального вида. 

5. Заключительные замечания 

Итак, использование простейших 

высокочастотных кусочно-постоянных сигналов 

позволяет формировать произвольные матрицы 

проводимостей. При записи матрицы «с нуля» 

процесс записи многошаговый – на каждом шаге 

записывается одна строка или один столбец 

матрицы. Если же уже имеется некоторая 

матрица, и требуется только небольшая её 

корректировка, можно производить изменения в 

отдельных строках или столбцах резисторной 
матрицы. 

 Удобство и сама возможность 

использования высокочастотных сигналов для 

формирования матрицы зависит от вида 

характеристических функций резистора. 

В частности, наиболее благоприятные условия 

возникают, если функция 𝐹𝐼
+(𝐼) растёт быстрее 

функции −𝐹𝐼
-(−𝐼) при увеличении тока I [7]. 

В этом случае доступен в принципе весь 

диапазон состояний резистора, и легко получить 
как положительные, так и отрицательные 

значения x. В противном случае доступный 

диапазон состояния уже, меньше возможностей 

для выбора базового состояния, время записи 

увеличивается, поскольку нельзя использовать 

большие амплитуды тока для получения 

положительных смещений x. Для функций 

𝐹0(𝑥), 𝐹𝑥
+(𝑥), 𝐹𝑥

-(𝑥) мы приняли выполнение 

условий (6). Невыполнение этих условий может 

сделать невозможной запись с помощью 

высокочастотных сигналов. Впрочем, условия 

(6) кажутся вполне естественными и даже имеют 

экспериментальные подтверждения [6,10]. 

Процедура записи и условия её 
реализуемости похожи при использовании 

кусочно-постоянных и гармонических 

сигналов [8]. Естественно, возникает вопрос о 

том, какой сигнал удобнее с практической точки 

зрения. С одной стороны, гармонические 

сигналы привычны для радиотехников и 

совместимы с элементами цепей переменного 

тока, прежде всего, с конденсаторами, что 

позволяет использовать большой накопленный 

опыт в области линейных радиотехнических 

цепей (например, использовать различные 

диапазоны частот для разделения записи и 
считывания информации). С другой стороны, 

использование кусочно-постоянных сигналов 

позволяет осуществлять более тонкое и удобное 

управление процессом записи. В отличие от 

гармонического сигнала, кусочно-постоянный 

сигнал не обязан иметь нулевое среднее. В 

частности, постоянный сигнал хорошо 

совместим с кусочно-постоянным сигналом, 

поскольку является его частным случаем. При 

использовании кусочно-постоянного сигнала 
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результат записи линейно зависит от фазового 

сдвига (см. (37)), в отличие от нелинейной 

зависимости для случая гармонических 

сигналов [8]. Это позволяет быстрее и точнее 

найти нужные фазовые сдвиги. Да и само 

формирование кусочно-постоянных сигналов 

при современном развитии цифровой 

электроники нельзя назвать сложной задачей. 

Кроме того, кусочно-постоянные сигналы 

удобны с методической точки зрения. При 
фиксированных значениях сигнала достаточно 

знать скорость изменения состояния резистора 

только при этих значениях напряжения, для 

получения простых оценок не обязательно 

предполагать факторизуемость правой части 

уравнения записи. Не возникает проблем с 

изменением формы сигнала, которое может быть 

использовано для выявления нелинейных 

свойств характеристических функций. При 

использовании гармонического сигнала его 

форма фиксирована. Можно, конечно, 
использовать сумму гармонических сигналов 

[11], однако это более сложный путь. Заметим, 

что любой сигнал можно приближенно 

представить кусочно-постоянным сигналом. 

Но практической пользы от этого нет, поскольку 

при большом числе уровней сигнала теряется 

его главное преимущество – простота. 

Для формирования матрицы проводимостей 

кроссбара использовался простейший кусочно-

постоянный сигнал — с двумя ненулевыми 

значениями и равными промежутками действия 

значений. Именно простота такого сигнала даёт 
надежду на практическую полезность 

рассмотренной методики записи информации в 

резисторную матрицу. 

Работа выполнена в рамках государственно 

го задания НИЦ «Курчатовский институт» - 

НИИСИ по теме № FNEF-2024-0001 "Создание 

и реализация доверенных систем 

искусственного интеллекта, основанных на 

новых математических и алгоритмических 

методах, моделях быстрых вычислений, 

реализуемых на отечественных вычисли- 
тельных системах" (1023032100070-3-1.2.1). 

 

Crossbar Array Programming  

Using Piecewise-Constant Signals 

G. A. Beskhlebnova, V. B. Kotov 

Abstract. To program a crossbar array, we need to adjust the resistor conductance using a limited number of 
control signals, which are voltages applied to the crossbar lines. Since the number of lines is significantly smaller than 
the number of resistors, this is a multi-step procedure. At each step, the conductances of the selected resistors are 
adjusted. The number of such resistors is no greater than the number of control signals. This inevitably changes the 
conductivity of some half-selected resistors, too. These unwanted changes must be compensated for. We examined a 
crossbar programming procedure using high-frequency piecewise-constant control signals. Our analysis involved a 
simple resistive element model. We demonstrated that an arbitrary (within known limits) conductance matrix can be 
programmed. At each step, a row or column of the crossbar array is generated or adjusted. We discussed the feasibility 

and convenience of such a procedure. 

Keywords: variable resistor, piecewise constant signal, resistor array, conductivity matrix. 
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