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1. Введение 

Стандарт MISRA C (Motor Industry Software 

Reliability Association) [1] возник как ответ на 

потребности автомобильной индустрии 

в предписывающих руководящих принципах для 

безопасного, переносимого и проверяемого 

использования языка C. С течением времени он 

превратился в де-факто эталон для множества 

отраслей, где надежность программного 

обеспечения критична: авиация, медицина, 
железнодорожный транспорт, промышленные 

контроллеры и т.п. 

Версия MISRA C 2012 [2] установила базу 

для строгой дисциплины программирования на 

языке C с четкой классификацией правил, 

директив и механизмов доказательства 

соответствия. Однако развитие языка C 

(включая стандарты C11, C17 и C23), рост числа 

многопоточных/параллельных программ, 

а также накопившийся опыт применения MISRA 

C в промышленности требовали пересмотра 
и обновления набора правил. В результате 

появился MISRA C 2023 [3], который, при 

соблюдении преемственности, вносит ряд 

существенных изменений: обновленную 

структуру правил, новые или переработанные 

требования, уточнения в терминологии 

и механизмах доказательства соответствия, 

а также усиление внимания к современным 

аспектам, таким как порядок вычислений, 

многопоточность и взаимодействие 

с компиляторными расширениями. 

Цель данной статьи - выполнить 
систематическую декомпозицию отличий между 

MISRA C 2012 (AMD1+AMD2) и MISRA C 2023, 

предоставить объяснение существенных новых 

или измененных правил и проиллюстрировать 

их примерами. 

2. Обзор изменений в структуре 

стандарта 

2.1. Переработка организационной 

структуры и классификации правил 
Ключевое изменение. MISRA C 2023 

переосмысливает и уточняет структуру правил: 

происходит более строгая сегрегация 

требований по уровням обязательности, четкая 

фиксация зависимостей между правилами 

и директивами, а также улучшенное разделение 

между строго нормативными требованиями 

и поясняющими рекомендациями. Это отражено 

в переработанных заголовках правил и их 

аннотациях. 
Почему это важно. В прошлой версии 

(MISRA C 2012) некоторые правила и директивы 

могли трактоваться неоднозначно при 

реализации процессов соответствия. Новая 

структура снимает неоднозначности, облегчая 

реализацию и аудит: инструменты статического 

анализа теперь могут точнее отображать 

причину нарушения, уровень строгости 

и возможную стратегию соответствия. 

Пример (иллюстрация структурной 

перестройки). 
Исходный контекст: правило X (в MISRA C 

2012) могло быть классифицировано как 

рекомендация, однако его нарушение на 

практике приводило к критическим ошибкам. 

MISRA C 2023 перенесло это положение 

в разряд обязательных или ввело 

сопутствующую директиву для уточнения 

области применения. 

Код: 

/* Пример: использование динамического 

приведения типов для работы с бинарными 

пакетами */ 
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void process (void *data) { 

    uint32_t *p = (uint32_t *)data;  

/* предположение: data выровнено и 

указывает на 32-битный блок */ 

    uint32_t v = *p; 

    /* ... */ 

} 

Что иллюстрирует пример. Данный 

фрагмент иллюстрирует ситуацию, где код 

полагается на предположения о выравнивании 
и представлении данных, что может быть 

небезопасно на разных архитектурах. В MISRA 

C 2023 такие конструкции получили более 

жесткую классификацию и дополнились 

директивой по обязательной верификации 

условий (alignment/representation) при 

использовании подобных конструкций. 

Действие для приведения 

к стандарту. Явная проверка выравнивания, 

использование memcpy для копирования вместо 

безопасного приведения, или 
структурированное чтение байтов с учетом их 

порядка. Все эти меры иллюстрируют 

практическую адаптацию. 

2.2. Расширение охвата языка C и 

явный учет современных языковых 

конструкций 
Ключевое изменение. MISRA C 2023 

официально учитывает развитие языка C после 

C11 (включая особенности, включенные 
в C17/C23) и уточняет совместимость правил с 

конструкциями современных компиляторов, 

в том числе с механизмами атомарных операций, 

ограничениями на порядок вычислений 

и новыми типовыми возможностями. Это 

зафиксировано в ряде новых заголовков 

и пояснений. 

Почему это важно. Современные проекты 

чаще используют элементы стандарта C, 

появившиеся после C99, включая атомарные 

типы <stdatomic.h>, условную компиляцию для 
разных стандартов и новые правила 

оптимизации компиляторов. Для поддержания 

релевантности MISRA C должен явным образом 

описывать поведение правил для этих 

конструкций. 

Пример (атомарные операции и порядок 

выполнения). 
Код: 

#include <stdatomic.h> 

 

atomic_int flag = 0; 
int shared = 0; 

 

void writer (void) { 

    shared = 42;                /* (1) */ 

 

    atomic_store_explicit (&flag, 1, 

memory_order_release); /* (2) */ 

} 

 

void reader (void) { 

    if (atomic_load_explicit (&flag, 

memory_order_acquire) == 1) { /* (3) */ 

        /* гарантируется видимость записи 

shared */ 

        int v = shared;        /* (4) */ 
    } 

} 

Что иллюстрирует пример. Использование 

атомарных операций с семантикой 

release/acquire для синхронизации записи 

и чтения некоторых переменных. MISRA C 2023 

более явно рассматривает такие поведенческие 

шаблоны и дает рекомендации по корректному 

использованию атомарных операций, чтобы 

избежать неопределенного поведения 

и несогласованных состояний в многопоточной 
среде. 

Действие для приведения 

к стандарту. Правила стандарта требуют 

однозначности - если код использует атомарные 

операции, эти операции должны иметь явно 

заданный порядок доступа к памяти, и их 

применение должно сопровождаться 

комментариями/доказательствами, почему 

выбранный порядок корректен в контексте 

проекта. 

2.3. Уточнения терминологии и 

механизма доказательства 

соответствия (compliance) 
Ключевое изменение. MISRA C 2023 

уточняет термины: что имеется в виду под 

«нарушением», «директивой», 

«рекомендацией», «правилом обязательного 

характера», а также отношения между 

«доказательством соответствия» 

и «допустимыми отклонениями (deviations)». 
Эти уточнения помогают аудиторам 

и инженерам точно интерпретировать 

выявленные нарушениях и корректно оформлять 

отклонения. 

Почему это важно. Четкое понимание 

классификации нарушений – это основа для 

корректных процедур аудита, тестирования 

и документирования решений об отклонениях. 

Без этого разработчики могут неправильно 

относить предупреждения 

компилятора/анализатора к категории 
«рекомендация» вместо «обязательное 

требование», и наоборот. 

Пример (доказательство соответствия). 
Сценарий: Проект использует 

низкоуровневую операцию ввода-вывода, 
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которая по дизайну нарушает правило X 

(например, прямой доступ к регистрам через 

приведенный указатель). В MISRA C 2012 это 

могло быть признано допустимым при 

оформлении отклонения. MISRA C 2023 требует 

более формального доказательства: 

документального анализа, тестов 

и статического/динамического обоснования 

безопасности. 

Что иллюстрирует пример. Необходимость 
формальной документации при отклонениях - не 

только запись «отклонение разрешено», но 

и конкретные ссылки на тесты, 

статический/динамический анализ и условия 

эксплуатации. Это повышает надежность 

процедур соответствия. 

3. Новые и существенно 

измененные требования 

MISRA C 2023 

Ниже приведен разбор ключевых новых 

требований и переработок. Для удобства они 

сгруппированы по тематике: управление 

неопределенным поведением, типовая 

безопасность и преобразования, обработка 

указателей и выравнивание, порядок 

вычислений и побочные эффекты, 

многопоточность и параллелизм, 
взаимодействие с компиляторными 

расширениями, проверяемость 

и инструментальная поддержка, процесс 

отклонений. 

3.1. Управление неопределенным 

поведением (Undefined Behavior, UB) 
Изменение. MISRA C 2023 усиливает 

требования по избеганию ситуаций, приводящих 

к неопределенному поведению в языке C. 

В тексте правил уделено повышенное внимание 

таким ситуациям, как: переполнение знаковых 

целых типов, некорректный доступ по 

выровненному указателю, чтение 
неинициализированной памяти, использование 

освобожденной памяти и некорректные 

преобразования типов. 

Почему это важно. UB может приводить 

к непредсказуемым последствиям: от 

ошибочных результатов до аварийной остановки 

или эксплуатации уязвимостей. Современные 

компиляторы активно используют UB для 

оптимизаций, следовательно, код, 

полагающийся на UB, может вести себя по-

разному в разных версиях компилятора или 
с разными параметрами оптимизации. 

 

 

 

Пример 1 (переполнение знакового типа). 
Код: 

#include <stdint.h> 

 

int32_t sum (int32_t a, int32_t b) { 

    return a + b; /* потенциальное 

переполнение */ 

} 

Что происходит. При сложении двух 

знаковых 32-битных чисел может произойти 
переполнение, которое в стандарте C является 

неопределенным поведением. Компилятор 

может предполагать, что такого переполнения не 

бывает, и оптимизировать код исходя из этого 

предположения, что приведет к неожиданным 

результатам в случае переполнения. 

MISRA C 2023. Указывает на необходимость 

либо использовать беззнаковую арифметику 

с проверкой переполнения, либо производить 

проверки до операции, либо использовать 

безопасные функции/макросы, которые явно 
документируют поведение при переполнении. 

Как исправлять. Один из подходов -

приведение к 64-битному типу с проверкой: 

 

int32_t sum_safe (int32_t a, int32_t b) { 

    int64_t tmp = (int64_t)a + (int64_t)b; 

    if (tmp > INT32_MAX) { 

        /* обработка ошибки */ 

    } 

    if (tmp < INT32_MIN) { 

        /* обработка ошибки */ 
    } 

    return (int32_t)tmp; 

} 

Пример 2 (чтение неинициализированной 

памяти). 
Код: 

int f (void) { 

    int x; /* неинициализирован */ 

    return x + 1; 

} 

Что происходит. Чтение x до 

инициализации, классический пример 
неопределенного поведения. MISRA C 2023 

ужесточает требования по обнаружению 

подобных операций и рекомендует явно 

инициализировать переменные или 

использовать статический анализ для 

доказательства инициализации. 

Практика. Использование инструментов 

статического анализа, добавление правил 

кодирования, обязательные обзоры и тесты 

покрывают такие проблемы. 
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3.2. Порядок вычислений и побочные 

эффекты 
Изменение. MISRA C 2023 сильнее 

фокусируется на проблемах, связанных 

с неопределенным порядком вычислений 

выражений, в результате чего пересматриваются 

и уточняются правила, запрещающие 

конструкции, зависящие от порядка вычислений 

подвыражений (например, модификация 

объекта более одного раза между 

последовательными точками наблюдения). 
Почему это важно. Распространенной 

категорией ошибок является использование 

выражений вроде i = i++ + 1; или a[i++] = i; где 

результат зависит от порядка вычислений. 

Компиляторы и стандарты языка допускают 

вариативное поведение, следовательно, такие 

конструкции приводят к UB. 

Пример (выражение с побочными 

эффектами). 
Код: 

int i = 0; 

int a[2]; 
a[i] = ++i; 

Что происходит. Поведение не определено: 

одновременно читается и модифицируется i без 

промежуточной последовательной точки 

наблюдения. MISRA C 2023 требует запрета 

таких конструкций и рекомендует разделять 

операции: 

int temp = ++i; 

a[i] = temp; 

Особое внимание следует уделять 

выражениям с функциями и порядком 
вычислений их аргументов. MISRA C 2023 

вводит пояснения о том, что порядок 

вычисления аргументов функций является 

зависимым от реализации, поэтому код должен 

не допускать зависимостей между аргументами, 

где один аргумент модифицирует объект, 

читаемый в другом аргументе. 

3.3. Указатели, выравнивание и 

приведенные типы 
Изменение. В MISRA C 2023 усилена 

позиция по наглядности и безопасности 

операций с указателями: переработаны 

требования к приведению указателей 

и обеспечению корректного выравнивания. 
Почему это важно. Неправильное 

выравнивание может привести к аппаратным 

исключениям на некоторых архитектурах, 

а неявные преобразования типов указателей 

могут скрывать ошибки. Это особенно критично 

в низкоуровневом коде (драйверы, работа 

с регистровыми картами). 

 

 

Пример (приведение void* к типу с более 

строгим выравниванием). 
Код: 

void *buffer = get_unaligned_buffer (); 

uint32_t *p = (uint32_t *)buffer; 

uint32_t v = *p; /* потенциальное нарушение 

выравнивания */ 

Что происходит. Если buffer не выровнен по 

4-байтовой границе, то чтение *p может 

вызывать аппаратную ошибку. MISRA C 2023 
требует либо проверки выравнивания перед 

такими операциями, либо 

использование memcpy для безопасного 

копирования. 

Исправление: 

uint32_t v; 

memcpy (&v, buffer, sizeof v); 

Пример (strict aliasing). 
Код: 

float f = 1.0f; 

int *p = (int *)&f; 
int i = *p; /* может нарушать strict aliasing */ 

Что 

происходит. Чтение float через int* нарушает 

правило strict aliasing и может  

вызвать неопределенное поведение при 

оптимизациях. MISRA C 2023 более явным 

образом рекомендует избегать подобных 

приведений и использовать, например, memcpy. 

3.4. Типовая безопасность и 

преобразования 
Изменение. Стандарт усиливает требования 

к контролю за неявными преобразованиями, 

особенно между знаковыми и беззнаковыми 
типами, при преобразовании целочисленных 

типов различной ширины, а также при 

использовании литералов и макросов, которые 

могут приводить к неожиданным расширениям 

типа. 

Почему это важно. Неправильные 

преобразования приводят к логическим 

ошибкам и уязвимостям, в частности когда 

отрицательные значения трактуются как 

большие положительные после преобразования 

в беззнаковый тип. 

Пример (смешивание знаковых и 

беззнаковых типов). 
Код: 

int32_t a = -1; 

uint32_t b = 1; 

if (a < b) { /* сравнение int32_t и uint32_t */ 

    /* ... */ 

} 

Что происходит. В выражении a < b значение а

будет преобразовано к uint32_t, что дает 

большое положительное число, и поэтому 

условие, вероятно, окажется ложным, что не 
соответствует интуитивному ожиданию. MISRA 
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C 2023 заставляет избегать таких неочевидных 

сравнений и требует явного приведения типов 

или использования временных переменных. 

Исправление: 

if ((int32_t)a < (int32_t)b) { /* явное 

приведение и проверка */ 

    /* ... */ 

} 

3.5. Многопоточность, атомарные 

операции и взаимодействие с 

памятью 
Изменение. В MISRA C 2023 появляется 

более формализованное обсуждение 

многопоточности, атомарности и порядка 

доступа к памяти. Это включает рекомендации 

по использованию <stdatomic.h>, корректной 

последовательности вызовов для обращения к 

памяти и необходимости документирования 
инвариантов при многопоточном доступе 

к общим объектам. 

Почему это важно. Современные 

встраиваемые системы все чаще полагаются на 

многопоточность и аппаратный параллелизм. 

Неправильное использование неблокирующих 

конструкций и атомарных операций может 

приводить к трудноуловимым ситуациям гонки 

и UB. 

Пример (неправильное использование 

атомарности). 
Код: 
#include <stdatomic.h> 

 

int counter = 0; /* неатомарная переменная */ 

 

void inc (void) { 

    counter++; /* гонка при параллельном 

доступе */ 

} 

Что происходит. Инкремент counter++ не 

является атомарной операцией, следовательно, 

при конкурирующем доступе возможны 
потерянные значения counter. MISRA C 2023 

рекомендует использовать атомарные типы: 

atomic_int counter = ATOMIC_VAR_INIT(0); 

 

void inc (void) { 

    atomic_fetch_add_explicit (&counter, 1, 

memory_order_relaxed); 

} 

Дополнение. Стандарт требует также 

документировать ожидаемую семантику памяти 

и показать, почему выбранный порядок доступа 
к памяти (в примере - memory_order_relaxed) 

является достаточным для корректности. 

 

 

 

3.6. Взаимодействие с расширениями 

компилятора 

и платформозависимыми 

конструкциями 
Изменение. MISRA C 2023 дает более 

формализованные указания по использованию 

компиляторных расширений, встроенных 

ассемблерных вставок, специфичных 

платформенных API и пр. Новые объяснения 

направлены на то, чтобы разработчик явно 

документировал причину и контекст 

использования расширения, а также включал 

доказательства того, что поведение, выходящее 
за рамки стандарта C, находится под контролем 

и безопасно. 

Почему это важно. Расширения 

компилятора часто используются для 

оптимизации или доступа к аппаратуре; при 

этом они нарушают переносимость и могут 

скрывать UB. Четкая документация 

и ограничения предотвращают 

непреднамеренные последствия. 

Пример (встроенный ассемблер). 
Код: 

int read_hw (void) { 
    int val; 

    __asm__ volatile ("in %0, 0x60" : "=r"(val)); 

    return val; 

} 

Что происходит. Встроенный ассемблер 

выходит за рамки стандарта C. MISRA C 2023 

допускает его использование при условии 

оформления отклонения/пояснения: указать 

причину, влияние на переносимость, 

предусмотреть альтернативные реализации 

и тесты. 
Практика. Добавление макроса-обвязки, 

тестов эмуляции и документирование вызовов 

обеспечивает соответствие требованиям. 

3.7. Процесс оформления отклонений 

(deviations) и требования к 

документации 
Изменение. MISRA C 2023 уточняет 

и формализует процесс оформления 

отклонений: какие шаги должны присутствовать 
в документе об отклонении, какие 

доказательства требуются, и какие 

тесты/проверки должны проводиться. 

Почему это важно. Отклонения - это не 

«дыра» в стандарте, а формализованный 

процесс управления исключениями. 

Повышенные требования к доказательствам 

и тестам делают отклонения менее 

рискованными и более прозрачными для аудита. 
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Пример (ориентировочная структура 

документа отклонения). 
Документ должен содержать: 

- Идентификатор отклонения и ссылку на 

правило. 

- Обоснование (архитектурное, 

аппаратное, производительное). 

- Варианты минимизации рисков от 

использования отклонения. 

- Список тестов и результаты статического 
анализа, которые подтверждают 

безопасность. 

- Ответственное лицо и срок пересмотра. 

4. Выборочный разбор новых 

правил и пояснения с 

примерами 

Следующий раздел содержит 

последовательный разбор наиболее значимых 

новых или существенно измененных правил, как 

они отражены в заголовках MISRA C 2023, их 

практическое значение и развернутые примеры. 

Важное замечание. Ниже приведены 

тематически независимые пункты. Каждый из 

них ориентирован на отдельную проблему 

безопасности или надежности кода на языке C и 

иллюстрирован примером. 

4.1. Требования по выявлению 

операций чтения 

неинициализированных объектов 
MISRA C 2023 усиливает требование по 

обнаружению ситуаций, где читается 

неинициализированная память. Инструменты 

должны обнаруживать такие чтения на этапе 

статического анализа, а код должен либо явно 

инициализировать объекты, либо иметь 
доказательство инициализации до чтения. 

Пример (локальная переменная, 

используемая без инициализации). 
Код: 

int compute(void) { 

    int x;   /* неинициализированная 

переменная */ 

    if (some_cond ()) { 

        x = 10; 

    } 

    return x;       /* чтение может быть 

неопределенным */ 
} 

Анализ. Если some_cond() иногда ложно, то 

x останется неинициализированным. 

MISRA C 2023 требует либо предоставить 

инициализацию по умолчанию (int x = 0;), либо 

изменить код, чтобы гарантировать 

присваивание перед возвратом. 

Рекомендация. Предпочтительно 

инициализировать переменные при объявлении, 

особенно для скалярных локальных 

переменных, либо использовать явные 

проверяемые пути присваивания. 

4.2. Уточнение правил работы 

с switch и case 
MISRA C 2023 требует ясности при 

использовании switch/case: все допустимые 

варианты должны быть явно обработаны, 

а «проваливание» (fallthrough) из 

одного case в другой допустимо только при 
явном указании и обосновании. Это уменьшает 

вероятность ошибок при добавлении 

новых case-ветвей. 

Пример (неявное проваливание). 
Код: 

switch (x) { 

case 1: 

    do_a(); 

case 2:  /* неявное проваливание */ 

    do_b(); 

    break; 

} 
Что происходит. Если разработчик явно 

полагался на поведение «проваливания», это 

может быть трудно заметно при анализе кода. 

MISRA C 2023 требует явной пометки 

и обоснования: 

switch (x) { 

case 1: 

    do_a(); 

    /* fallthrough */ /* обоснование: Intentional 

fallthrough */ 

case 2: 
    do_b(); 

    break; 

} 

4.3. Новые требования по явной 

обработке ошибок и возвратных 

кодов 
Повышены требования к проверке 

возвратных кодов функций, особенно тех, 

которые могут указывать на ошибку (например, 
функции ввода-вывода, системные вызовы). 

MISRA C 2023 предписывает явную обработку 

таких кодов или документированное 

обоснование, почему их можно игнорировать. 

Пример (игнорирование кода возврата). 
Код: 

int res = write (fd, buf, n); 

/* Далее res нигде не используется, 

игнорирование */ 

Что происходит. Игнорирование результата 

операции может привести к потере данных. 
Новая политика требует либо обработки res, 

либо оформленного отклонения с указанием 

причин. 
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4.4. Расширенные требования по 

анализу времени выполнения 

(timing) и влиянию на безопасность 
MISRA C 2023 акцентирует внимание на 

коде, где временные характеристики 

(латентность, дедлайн) критичны для 

безопасности. Новые аннотации правил 
требуют, чтобы код, влияющий на временную 

надежность, был документирован и прошел 

соответствующие измерения/тесты. 

Пример (цикл с потенциально 

неопределенной длительностью). 
Код: 

while (!hardware_ready ()) { 

    /* пустой цикл ожидания */ 

} 

Что происходит. Если hardware_ready 

() никогда не станет истинной, цикл будет 
бесконечным, что может иметь критические 

последствия. MISRA C 2023 требует установки 

явного таймаута и наличия стратегий выхода из 

цикла: 

unsigned timeout = 1000u; 

while (!hardware_ready () && timeout--) { 

    /* ожидание с тайм-аутом */ 

} 

if (timeout == 0u) { 

    /* обработка ошибки */ 

} 

4.5. Требования по фиксации и аудиту 

операций со смещениями и 

индексами массивов 
Уточнены правила про доступ к массивам: 

индексы должны быть проверены, значения 

границ явно документированы, и использование 

вычисляемых индексов без проверки должно 

быть обосновано. 

Пример (индексирование с риском выхода 

за границы). 
Код: 

int get_value (int *arr, size_t idx) { 

    return arr[idx]; /* нет проверки границ */ 

} 

Что происходит. Без гарантии на 

размер arr доступ к arr[idx] может выйти за 

пределы массива. MISRA C 2023 рекомендует 

либо передавать размер массива вместе 

с указателем, либо использовать API, где длина 

известна, либо выполнять проверки. 

4.6. Новые положения, касающиеся 

использования макросов и генерации 

кода через препроцессор 
MISRA C 2023 ужесточает требования 

к макросам: сложные макросы, содержащие 

инструкции, влияющие на ход выполнения 

потока, многострочные выражения или 

побочные эффекты, должны быть сокращены 

и заменены inline функциями или тщательно 

документированы. Макрос, меняющий 

семантику исходного кода, требует отдельного 

обоснования и тестов. 

Пример (макрос с побочными 

эффектами). 
Код: 

#define MAX(a,b) ((a) > (b) ? (a) : (b)) 

int x = MAX(i++, j++); 
Что происходит. Макрос приводит 

к двойному выполнению i++ или j++, что 

является непредвиденным поведением. MISRA 

C 2023 требует избегать таких макросов или 

использовать inline функции: 

static inline int max_int(int a, int b) { 

    return (a > b) ? a : b; 

} 

5. Инструменты и практическая 

интеграция (рекомендации) 

MISRA публикует упрощенные тексты 

правил (headlines) для интеграции 

с анализаторами кода - это позволяет 

инструментам сопоставлять предупреждение 

с правилом MISRA и облегчает отчетность. 
Ниже приведены рекомендации по 

внедрению в проект. 

Обновление процесса анализа 

кода. Включить проверки на соответствие 

MISRA C 2023 в обязательный процесс анализа 

кода. Ошибки высокого уровня должны 

блокировать процесс слияния веток кода или 

сборки. 

Обучение команды. Провести семинары по 

новым правилам и их примерам; обратить 

внимание на тонкие места: порядок вычислений, 
строгую семантику, атомарность. 

Стратегия обработки 

отклонений. Разработать шаблон для 

документа, описывающего отклонения 

в соответствии с требованиями MISRA C 2023. 

Миграция кода. Постепенно производить 

рефакторинг проблемных областей: макросы → 

inline-функции; неинициализированные 

переменные → явная инициализация; 

неатомарные глобальные переменные → 

атомарные типы/мьютексы там, где требуется. 

Инструментальная 
автоматизация. Настроить процедуру 

интеграции для регулярного запуска 

статического анализа с отчетностью по 

тенденциям (новые нарушения, устраненные, 

продолжающиеся). 

 



Труды НИИСИ, Том 15 №4 DOI 10.25682/NIISI.2025.4.0007 

  

  

  

6. Заключение 

MISRA C 2023 представляет собой значимое 

эволюционное обновление набора правил, 

нацеленное на повышение надежности, 

предсказуемости и проверяемости кода на языке 

C, особенно в задачах критичных 

к безопасности. Основные направления 

изменений: ужесточение требований по 

управлению неопределенным поведением, 

уточнение правил работы с указателями 

и выравниванием, более явное рассмотрение 
современной семантики языка (атомарность, 

порядок вычислений), усиление требований к 

документированию отклонений и улучшение 

интеграции с инструментами статического 

анализа. Эти изменения отражают опыт 

применения MISRA в промышленности 

и учитывают современные практики разработки 

ПО. 

Практическая польза от миграции на MISRA 

C 2023 очевидна: снижение числа 

трудноуловимых дефектов, улучшение 

переносимости и предсказуемости поведения на 

разных компиляторах и архитектурах, а также 

повышение качества процедур аудита 

и управления отклонениями. Однако внедрение 

потребует усилий: обновления инструментов, 

обучения кадров и рефакторинга 

унаследованного кода. Поэтому организациям 

рекомендуется планировать поэтапную 

миграцию с выделенными ресурсами 
на адаптацию инструментов и обучение. 

MISRA C 2023 - это современный 

и прагматичный шаг вперед в развитии правил 

надежного программирования на языке C. Он 

способствует снижению рисков, связанных 

с неопределенным поведением и контекстно 

зависимыми ошибками, делая управление 

широким набором уязвимостей и дефектов 

более формализованным и предсказуемым. 

«Публикация выполнена в рамках 

государственного задания НИЦ «Курчатовский 
институт» - НИИСИ» по теме FNEF-2024-0001». 
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