

Особенности сборки кросс-компилятора

GCC и бинарных утилит

В.А. Галатенко1, Г.Л. Левченкова2, С.В. Самборский3

1ФГУ ФНЦ НИИСИ РАН, Москва, Россия, galat@niisi.ras.ru;

2ФГУ ФНЦ НИИСИ РАН, Москва, Россия, galka@niisi.ras.ru;

3ФГУ ФНЦ НИИСИ РАН, Москва, Россия, sambor@niisi.ras.ru

Аннотация. Разработчики, использующие свободно распространяемый компилятор GCC, нередко стал-

киваются с проблемой правильной сборки кросс-компилятора и необходимых бинарных утилит из исходных

текстов для заданной целевой архитектуры. В статье приводится общая последовательность действий по само-

стоятельной сборке кросс-компилятора и бинарных утилит для архитектуры MIPS, подходящая для разных вер-

сий компилятора. Приводятся примеры проблем, которые могут при этом возникать, и способы их решения.

Ключевые слова: компилятор, бинарные утилиты, GCC, сборка, MIPS.

1. Введение

Свободно распространяемый компилятор

GCC [1] широко используется разработчиками

встраиваемых систем и систем реального вре-

мени, функционирующих под управлением ши-

рокого спектра аппаратных платформ.

В данной работе будет приведена апробиро-

ванная авторами инструкция по правильной

сборке кросс-компилятора и необходимых би-

нарных утилит для архитектуры MIPS. При

необходимости эта инструкция может быть

взята за основу при сборке компилятора для дру-

гих аппаратных платформ.

2. Предварительные действия

Прежде всего надо убедиться, что доступно

необходимое программное обеспечение. Для по-

лучения архивов исходных текстов может пона-

добится утилита wget, а для их распаковки - tar.

Если планируется работа с git-репозиторием, то,

естественно, нужен сам git.

Точный список необходимых программ и

диапазон допустимых версий этих программ за-

висит от того, какие версии компилятора и би-

нарных утилит предполагается собирать. Обяза-

тельно потребуются следующие утилиты:

 make

 gcc (обязательно с поддержкой C++)

 makeinfo (из пакета texinfo)

Также могут понадобиться утилиты bison,

flex, m4.

Если сборка происходит под управлением

операционной системы Linux, то bash и стан-

дартный набор команд (cd, rm, mkdir, и т.п.) в си-

стеме уже есть. Библиотеки GMP, MPFR и MPC

заранее устанавливать не нужно, так как их

лучше собирать самим (см. п. 3).

Для удобства сборки компилятора требуется

создать каталог, например, gcc-mke-build, и пе-

рейти в него (имя gcc-mke-build произвольно и

дальше не будет использоваться). Затем в этом

каталоге удобно создать подкаталог для исход-

ных текстов, например, src.

 mkdir gcc-mke-build

 cd gcc-mke-build

 mkdir src

Далее создадим каталог, в который будут

установлено все собранное программное обес-

печение:

 sudo mkdir /opt/gcc-mke

Следует учесть, что для записи в /opt обычно

требуются права администратора, поэтому ис-

пользована команда sudo. Ниже все команды

установки запускаются через sudo.

При необходимости, путь /opt/gcc-mke

можно заменить на более удобный, используется

он только в ключах команд configure. Например,

если невозможно использовать sudo или нежела-

тельно устанавливать компилятор в общедоступ-

ное место, то можно установить его в домашнем

каталоге, но при этом рекомендуется использо-

вать полный путь (начиная с ‘/’, а не с ‘~’). Для

непродолжительных экспериментов можно

установить компилятор в каталог временных

файлов, например, в /var/tmp/gcc-mke.

3. Сборка арифметических

библиотек

Для сборки компилятора (но не бинарных

44

утилит) требуются три библиотеки: GMP –

функции для операций над целыми числами не-

ограниченной длины, MPFR – функции для опе-

раций с произвольной точностью над числами с

плавающей запятой и MPC – аналогичные функ-

ции для операций над комплексными числами с

плавающей запятой. Библиотека MPFR исполь-

зует функции библиотеки GMP, а библиотека

MPC, в свою очередь, использует функции из

MPFR, поэтому собирать их нужно именно в та-

ком порядке.

3.1. Сборка GMP
Сперва необходимо скачать и распаковать ак-

туальную версию библиотеки с официального

сайта:

 wget https://gmplib.org/download/gmp/gmp-

6.2.1.tar.xz

 cd src

 tar xaf ../gmp-6.2.1.tar.xz

В команде распаковки (tar xaf ...) параметр ‘a’

означает автоматическое определение компрес-

сора, которым сжат tar-архив. Это удобно, но мо-

жет не сработать, если в системе не установлен

достаточно современный tar, или нет соответ-

ствующего компрессора. В этом случае следует

дополнительно установить необходимые пакеты

или произвести распаковку на другом компью-

тере.

Далее надо сконфигурировать библиотеку:

 cd gmp-6.2.1

 ./configure --disable-shared --enable-static \

 --disable-assembly --host=`./configfsf.guess` \

 --prefix=/opt/gcc-mke

Ключ --prefix=/opt/gcc-mke указывает конфи-

гуратору каталог, куда будет установлена биб-

лиотека, ниже он будет использован для всех ко-

манд configure. Смысл этого и остальных клю-

чей можно узнать, запустив ‘./configure –help’

или, при необходимости, посмотрев непосред-

ственно сам файл configure. Использование клю-

чей --disable-assembly и --host в данной команде

обсуждается ниже в разделе 6.

После конфигурирования производим ком-

пиляцию и сборку библиотеки:

 make -j5

Ключ -j используется для параллельной

сборки, значение ключа следует устанавливать в

зависимости от количества ядер процессора и

размера оперативной памяти.

Если памяти достаточно, то рекомендуется

указывать число N+1, где N - число ядер, обычно

его можно узнать в /proc/cpuinfo. Если памяти

совсем мало, то использование параллельной

сборки не рекомендуется. Также использовать -j

не рекомендуется для команд make check и make

install.

Проверить успешность сборки можно следу-

ющей командой (все тесты должны проходить

успешно):

 make CFLAGS="-O0" check

Здесь используется отменяющий оптимиза-

цию параметр CFLAGS="-O0". Связано это с

тем, что есть отдельные версии GMP и отдель-

ные версии GCC, такие что с оптимизацией один

из тестов компилируется неправильно и дает

ложную ошибку (это не означает наличие

ошибки в GMP).

Установка собранной библиотеки GMP (файл

libgmp.a) с заголовочными файлами и докумен-

тацией производится командой:

 sudo make install

 cd ../..

3.2. Сборка MPFR
Надо скачать актуальную версию библиотеки

с официального сайта и распаковывать ее:

 wget https://www.mpfr.org/mpfr-current/mpfr-

4.1.0.tar.xz

 cd src

 tar xaf ../mpfr-4.1.0.tar.xz

При конфигурировании необходимо указать

путь к установленной ранее библиотеке GMP:

 cd mpfr-4.1.0

 ./configure --disable-shared --enable-static \

 --prefix=/opt/gcc-mke \

 --with-gmp=/opt/gcc-mke

Оставшиеся действия аналогичны п. 3.1:

 make -j5

 make check

 sudo make install

 cd ../..

3.3. Сборка MPC
Получение и распаковка актуальной версии

библиотеки:

 wget --no-check-certificate \

 https://www.multiprecision.org/dowloads/mpc-

1.2.0.tar.gz

 cd src

 tar xaf ../mpc-1.2.0.tar.gz

Ключ --no-check-certificate потребовался, по-

скольку на данный момент на сайте

45

www.multiprecision.org просроченный сертифи-

кат.

При конфигурировании следует так же, как и

в п. 3.2, указать расположение библиотек GMP и

MPFR:

 cd mpc-1.2.0

 ./configure --disable-shared --enable-static \

--prefix=/opt/gcc-mke \

--with-gmp=/opt/gcc-mke \

--with-mpfr=/opt/gcc-mke

Действия по сборке и установке библиотеки

такие же, как и в предыдущих пунктах:

 make -j5

 make check

 sudo make install

 cd ../..

4. Сборка бинарных утилит

Бинарные утилиты и компилятор также

можно собирать из архивов с исходными тек-

стами определенной версии, как и библиотеки

выше. Этот способ будет приведен позже. А сей-

час продемонстрируем сборку из исходных тек-

стов, полученных из git-репозитория.

Сперва следует клонировать репозиторий с

бинарными утилитами и gdb (gdb - отладчик, его

собирать не надо):

 cd src

 git clone \

 git://sourceware.org/git/binutils-gdb.git

Далее надо извлечь из репозитория в рабочий

каталог нужную нам версию:

 cd binutils-gdb

 git checkout binutils-2_37

 cd ../..

Затем нужно создать отдельный каталог для

сборки бинарных утилит (исходные тексты ле-

жат отдельно) и перейти в него:

 mkdir binutils-build

 cd binutils-build

При конфигурировании бинарных утилит

необходимо обратить внимание на маршрут к

файлу configure и используемый ключ --srcdir):

 ../src/binutils-gdb/configure \

 --srcdir=../src/binutils-gdb \

 --prefix=/opt/gcc-mke --target=mips-mke-elf \

 --disable-gold --disable-gdb --disable-sim

Ключи --disable-gold, --disable-gdb, --disable-

sim отменяют сборку программ, которые не по-

надобятся.

После конфигурирования производится

непосредственно сборка и установка:

 make -j5

 sudo make install

 cd ..

Проверка (make check) для бинарных утилит

не запускается, так как тестов очень много, и не

вся функциональность бинарных утилит имеет

смысл для целевой машины без операционной

системы. Поэтому не все тесты (по крайней мере

для архитектуры MIPS) будут выполнены

успешно. Соответственно, интерпретация ре-

зультатов проверки требует содержательного

анализа. То же самое, еще в большей степени, ка-

сается проверки компилятора.

Как было упомянуто выше, можно получить

исходные тексты бинарных утилит (той же вер-

сии 2.37) скачав их с официального сайта, не

клонируя весь репозиторий:

 wget http://ftp.gnu.org/gnu/binutils/binutils-

2.37.tar.bz2

или

 wget --no-check-certificate \

 https://ftp.gnu.org/gnu/binutils/binutils-

2.37.tar.bz2

(опять просроченный сертификат).

Затем распаковываем архив в каталог src:

 cd src

 tar xaf ../binutils-2.37.tar.bz2

 cd ..

 mkdir binutils-build

 cd binutils-build

Надо обратить внимание, что распакованный

каталог с исходным текстами имеет другое имя:

не binutils-gdb, а binutils-2.37. Поэтому потребу-

ется немного модифицировать команду конфи-

гурации, запускаемую в binutils-build:

 ../src/binutils-2.37/configure \

 --srcdir=../src/binutils-2.37 \

 --prefix=/opt/gcc-mke --target=mips-mke-elf \

 --disable-gold --disable-gdb --disable-sim

(или переименовать binutils-2.37 в binutils-

gdb в каталоге src).

46

Далее производится сборка и установка би-

нарных утилит:

 make -j5

 sudo make install

 cd ..

5. Сборка компилятора

Также, как и для бинарных утилит, следует

начать с клонирования репозитория (вариант с

распаковкой архива определенной версии будет

приведен ниже):

cd src

git clone git://gcc.gnu.org/git/gcc.git

Далее извлекается в рабочий каталог требуе-

мая версия:

cd gcc

git checkout releases/gcc-11.3.0

cd ../..

Затем надо создать каталог для сборки ком-

пилятора (исходные тексты лежат отдельно) и

перейти в него:

 mkdir gcc-build

 cd gcc-build

Конфигурируем компилятор:

 ../src/gcc/configure --srcdir=../src/gcc \

 --prefix=/opt/gcc-mke --target=mips-mke-elf \

 --disable-libssp --disable-gcov --disable-lto \

 --enable-languages=c --enable-multilib \

 --with-gmp=/opt/gcc-mke \

 --with-mpfr=/opt/gcc-mke \

 --with-mpc=/opt/gcc-mke

Если кроме компилятора C надо собрать

также компилятор C++, то следует заменить

ключ конфигурации

 --enable-languages=c

на

 --enable-languages=c,c++

и добавить ключ

 --disable-libstdcxx

поскольку невозможно собрать библиотеку

libstdc++ (библиотека времени выполнения GNU

C++) для целевого процессора без операционной

системы.

Затем следует сборка и установка компиля-

тора:

 make -j5

 sudo make install

 cd ..

Как и в случае с бинарными утилитами

можно получить исходные тексты определенной

версии компилятора gcc, скачав их с официаль-

ного сайта без клонирования всего репозитория:

 wget ftp://ftp.gnu.org/gnu/gcc/gcc-11.3.0/gcc-

11.3.0.tar.gz

Заметим, что в последней команде использо-

ван доступ по протоколу FTP, а не HTTP или

HTTPS, как ранее. Какой протокол использовать,

зависит от настройки сети и политик безопасно-

сти системы, в которой происходит сборка.

Кроме того, тот или иной протокол может просто

временно (или постоянно) не поддерживаться

сайтом, с которого скачиваются исходные тек-

сты.

Затем распаковываем архив в каталог src:

 cd src

 tar xaf ../gcc-11.3.0.tar.gz

 cd ..

 mkdir gcc-build

 cd gcc-build

Конфигурируем компилятор, не забыв сме-

нить имя gcc на gcc-11.3.0:

 ../src/gcc-11.3.0/configure \

 --srcdir=../src/gcc-11.3.0 \

 --prefix=/opt/gcc-mke --target=mips-mke-elf \

 --disable-libssp --disable-gcov --disable-lto \

 --enable-languages=c --enable-multilib \

 --with-gmp=/opt/gcc-mke \

 --with-mpfr=/opt/gcc-mke \

 --with-mpc=/opt/gcc-mke

Дальше так же, как ранее:

 make -j5

 sudo make install

 cd ..

6. Рекомендации и проблемы

Следует помнить, что собранный компилятор

(в отличии от бинарных утилит) нельзя просто

копировать из каталога в каталог, так как он за-

пускает свои проходы (cc1, as, и т.д.) по абсолют-

ным маршрутам. Поэтому, если все же по какой-

47

то причине (например, при оптимизации диско-

вого пространства) требуется переместить ком-

пилятор, то необходимо на старом месте поме-

стить символьную ссылку на новый каталог ком-

пилятора, чтобы все старые маршруты остались

корректными.

Если планируется использовать собранный

компилятор разными пользователями на разных

компьютерах, то рекомендуется выполнять все

процедуры сборки от специального пользова-

теля, созданного для этой цели. Иначе возможны

проблемы, например, с тем что у реального

пользователя, исполняющего вышеописанные

процедуры могут быть нестандартные значения

переменных окружения (PATH, LD_LI-

BRARY_PATH и т.п.).

Также, если планируется использовать ком-

пилятор и бинарные утилиты на разных компь-

ютерах следует быть осторожным с разделяе-

мыми библиотеками. В частности, можно заме-

тить, что библиотеки GMP, MPFR и MPC соби-

рались выше только в неразделяемом варианте (с

расширением ‘.а’), для того, чтобы они включа-

лись в компилятор на стадии компоновки. Тем

самым исключается путаница с версиями этих

библиотек, которые могут быть уже установ-

лены на компьютере.

Последняя рекомендация не является бес-

спорной: возможны ситуации, когда именно

неразделяемая библиотека ограничивает перено-

симость собранной с ней программы. При

сборке библиотеки GMP в п. 3.1 были использо-

ваны ключи конфигуратора --disable-assembly и

--host=`./configfsf.guess`. Они нужны для того,

чтобы помешать конфигуратору оптимизировать

GMP с использованием возможностей конкрет-

ного процессора компьютера, на котором проис-

ходит сборка (следует заметить, что конфигура-

тор по умолчанию полагается на информацию от

файла сценария config.guess).

 ./configure --disable-shared --enable-static \

 --disable-assembly --host=`./configfsf.guess` \

 --prefix=/opt/gcc-mke

Если не использовать ключ --host возможна

ситуация, когда, например, конфигуратор опо-

знает, что сборка библиотеки GMP происходит

на компьютере с процессором Skylake и пропи-

сывает в файлах сборки (Makefile) использова-

ние инструкций из набора BMI2 (Bit

Manipulation Instruction set 2). После того как по-

лученная библиотека GMP была использована

для сборки компилятора, при дальнейшей по-

пытке запустить этот компилятор на компьютере

с процессором Sandy Bridge произошло аварий-

ное завершение компилятора, поскольку Sandy

Bridge не поддерживает инструкции из BMI2.

Проблема с оптимизацией под конкретную

модель процессора возникает только для биб-

лиотеки GMP, при конфигурировании осталь-

ных библиотек, а также бинарных утилит и са-

мого компилятора, нет необходимости использо-

вать ключ --host.

Кроме приведенных выше общих рекоменда-

ций, для конкретных версий компилятора и би-

нарных утилит встречаются отдельные про-

блемы при их сборке. Например, если вместо ис-

пользованной выше версии компилятора gcc-

11.3.0 собирать более старую, но популярную

версию gcc-7.5.0 (последнюю в седьмой ветке),

то можно столкнуться со следующей ошибкой.

При запуске команды ‘make -j5’ на 64-битном

компьютере процесс сборки прерывается при

попытке сконфигурировать каталог zlib (содер-

жащий библиотеку сжатия данных). При этом

конфигуратор библиотеки zlib выводит следую-

щее сообщение:

 error: Link tests are not allowed after

GCC_NO_EXECUTABLES.

Это означает, что конфигуратор прекращает

работу, потому что не знает, как собирать испол-

няемые файлы. Эта ошибка специфична именно

для библиотеки zlib.

Причина в том, что файлы сборки содержат

указание на компиляцию библиотеки zlib в двух

вариантах: 64-битном и 32-битном, при том что

32-битный вариант, как правило, бесполезен, по-

скольку производится сборка 64-битного компи-

лятора. Проще всего обойти эту ошибку, устано-

вив на 64-битную систему, где производится

сборка, пакеты, требуемые для сборки 32-бит-

ных программ.

Например, в случае системы Linux Fedora

Core достаточно при помощи команды dnf уста-

новить 32-битные варианты библиотеки

glibc.i686 и glibc-devel.i686 (при этом будут уста-

новлены еще несколько 32-битных пакетов, не-

обходимых для glibc):

 sudo dnf install glibc.i686 glibc-devel.i686

Осталось заметить, что возможность сборки

32-битных программ на 64-битном компьютере

легко проверить, выполнив команду:

 gcc -m32 hello.c -o hello

где hello.c - любая программа на C, например,

самая короткая:

main(){}

Некоторые версии бинарных утилит также

48

содержат разные ошибки в сценариях сборки.

Например, для использованных выше бинарных

утилит версии 2.37 в каталоге /opt/gcc-

mke/share/man/man1 устанавливаются пустые

man-страницы.

Это ошибка именно версии 2.37, исправлен-

ная в версии 2.38. Ее можно исправить, приме-

нив к исходным текстам бинарных утилит вер-

сии 2.37 заплатку (patch), доступную по ссылке

[2]. Сделать это можно вручную (просто доба-

вить две строки в texi2pod.pl) или при помощи

команды

patch -p1 < файл_с_заплаткой

Как можно видеть на этих примерах, при

сборке различных версий бинарных утилит и

компилятора могут возникать разные проблемы,

требующие внимательного изучения. В след-

ствии этого, полная автоматизация процесса

сборки возможна только для конкретных версий,

после «ручной» сборки и проверки корректно-

сти и переносимости полученных инструментов.

7. Заключение

В каталог /opt/gcc-mke установлены бинар-

ные утилиты и компилятор для целевой архитек-

туры mips-mke-elf. Исполняемые файлы компи-

лятора и бинарных утилит (ассемблер, компо-

новщик, objdump и др.) находятся в каталоге

/opt/gcc-mke/bin.

Кроме исполняемых файлов, включаемых

файлов и библиотек в /opt/gcc-mke установлена

документация в формате info, для ее просмотра

необходимо правильно задать переменную окру-

жения INFOPATH:

 INFOPATH=/opt/gcc-mke/share/info info

Можно указать в качестве аргумента кон-

кретную программу, например, компилятор:

 INFOPATH=/opt/gcc-mke/share/info info gcc

или компоновщик:

 INFOPATH=/opt/gcc-mke/share/info info ld

Также в /opt/gcc-mke/share/man устанавлива-

ются man-страницы, для их просмотра необхо-

димо указывать имя команды, под которым она

помещена в каталог bin, например, mips-mke-elf-

gcc для компилятора:

 MANPATH=/opt/gcc-mke/share/man man

mips-mke-elf-gcc

Описанный выше подход позволяет собирать

разные версии бинарных утилит и компилятора.

Для этого можно просто выполнить команду ‘git

checkout' для другой версии. В статье описана

сборка актуальных на 2021 год версий бинарных

утилит и компилятора, но если планируется со-

бирать компилятор и бинарные утилиты более

старых версий, то могут потребоваться другие

версии библиотек GMP, MPFR, MPC. Рекомен-

дуемый согласованный набор старых версий:

gmp-4.3.2, mpfr-2.4.2, mpc-0.8.1.

Разумеется, нельзя в одном тексте описать

все, что касается сборки компилятора и бинар-

ных утилит. Например, сознательно опущены

вопросы, связанные с подписями скачанных ар-

хивов и их проверкой. Принципиально описыва-

лась только «ручная» процедура, без попыток ав-

томатизировать этот процесс сценариями на

языке shell, общим файлом сборки make или с

использованием утилиты rpmbuild.

«Публикация выполнена в рамках государ-

ственного задания по проведению фундамен-

тальных исследований по теме «Исследование и

реализация программной платформы для пер-

спективных многоядерных процессоров»

(FNEF-2022-002).»

Building the GCC Compiler and Binary

Utilities as Cross Tools

Vladimir Galatenko, Galina Levchenkova, Sergej Samborskij

Abstract. Developers using the freely distributed GCC compiler often face the problem of correctly building

the compiler and the necessary binary utilities from source texts, as well as their configuration to the desired target

architecture. The article provides a general sequence of actions for building of a cross-compiler and binary utilities for

the MIPS architecture, suitable for different versions of the compiler. Examples of problems that may arise in this case

and ways to solve them are given.

Keywords: compiler, binary utilities, GCC, building, MIPS

49

Литература

1. GCC: The GNU Compiler Collection, https:// https://gcc.gnu.org/.

2. Binutils commit, https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=2dad02b6

