О произведении множеств с единичной плотностью и его дополнении

Ю.Н. Штейников¹

¹ФГУ ФНЦ НИИСИ РАН, Москва, Россия, yuriisht@gmail.com

Аннотация. В статье S.Bettin; D. Koukoulopoulos, C. Sanna «A note on the natural density of product sets», Bull. Lond. Math. Soc. 53, No. 5, 1407-1413, 2021 было доказано, что множество произведений двух произвольных множеств целых чисел с единичной плотностью снова является множеством с плотностью единица. В этой же статье также были приведены верхнице оценки для так называемых соответствующих дополняющих множеств при некоторых специальных ограничениях. В настоящей работе доказываются аналогичные оценки при более слабых ограничениях..

Ключевые слова: плотность, подмножества, произведение

1. Введение

Всюду в этой статье A,B обозначают подмножества натуральных чисел. Стандартным образом обозначим через AB множество, которое является произведением множеств A и B, и определяется следующим образом

$$AB = \{ab : a \in A, b \in B\}$$

Исследования по изучению свойств произведения множеств имеет богатую историю и восходит к Π . Эрдешем, его знаменитой проблеме о таблице умножения. Данный вопрос ставился так. Каков размер множества натуральных чисел, представимых в виде произведения ab, где элементы a, b принадлежат отрезку [1, n], если n— достаточно большое число. Верно ли что множество таких произведений имеет размер по порядку меньший чем n^2 ? Данный вопрос был довольно подробно изучен самим n. Эрдешем и в дальнейшем n. Тененбаумом и К. Фордом, установившим точный порядок роста этой величины.

Стоит отметить, что изучение произведения множеств довольно активно развивалось такими известными специалистами как X.Силлеруело, О.Рамаре, С.Рамана, К.Санна и другими специалистами. Они рассматривали случайные множества A отрезка $[1,\ n]$, а также некоторый специальный класс множеств с нулевой плотностью и ставили задачу о размере множества произведений AA и частных A/A.

Перейдем к случаю бесконечных множеств A. Нам понадобится понятие плотности, которое определим ниже.

$$d(A) = \lim_{x \to \infty} \frac{|A \cap [1, x]|}{x}$$

Через s(A) обозначим множество, являющееся дополнением множества A до множества всех натуральных чисел.

Н.Хегувари, П. Пач, Ф.Хеннекарт и поставили вопросы, один из которых звучит таким образом.

Вопрос 1. Верно ли, что если d(A) = 1, то отсюда следует, что d(AA) = 1?

В статье [1] был дан положительный ответ на данный вопрос и соответственно доказана такая теорема.

Теорема 1. *Если*
$$d(A) = 1$$
 , *mo* $d(AA) = 1$.

В этой же статье это утверждение было количественно уточнено. А именно, когда

$$|s(A) \cap [1,n]| \leq \frac{n}{\log^b n}$$
 (*)

для некоторого фиксированного $b \in (0,1)$.

Приведем утверждение, которое получилось у указанных авторов в данном случае.

Пусть для некоторого фиксированного 0 < b < 1 выполнено условие (*), тогда

$$\left|\left\{s\left(AA\right) \bigcap \left[1,n\right]\right\}\right| < n/\left(\log n\right)^{c+o(1)},$$

$$c \partial e \ c = b^2/(1+b)$$

Из оценки видно, что если b близко к нулю, то оценка становится не такой эффективной и требует уточнения. Иными словами, какая будет оценка на порядок роста величины s(AA) в

случае, когда b близко к нулю. Для этого рассмотрим случай

$$|s(A) \cap [1,n]| < n/(\log \log n)^a$$
 (**)

и пусть a>1 — некотрый фиксированный параметр.

Замечание. Условие a > 1 является чисто

техническим и нужно для проведения вычислений и оценок.

Будем основываться на аргументах и технике, предложенной в статье [1]. Мы получаем аналогичные оценки в вышеописанном случае.

Главным результатом настоящей статьи является следующее утверждение.

Теорема 2. Пусть a > 1 - некоторое фиксированное число и выполнено соотношение (**) для множеств A, B. Тогда имеет место неравенство.

$$|\{s(AB) \cap [1,n]\}| < n/(\log \log \log n)^{-a+o(1)}.$$

Доказательство этой оценки опирается в основном на рассуждения и аргументы из вышеуказанной статьи [1] с учетом некоторых дополнительных соображений.

Замечание. Легко видеть, что Теорему 2 и все предыдущие утверждения можно доказывать для множеств A = B, так как в противном случае мы можем взять пересечение этих двух множеств, которое будет также иметь единичную плотность и будет при этом выполняться соотношение (**). Применение теоремы к этому множеству не изменит вид нужных нам оценок.

2. Предварительные сведения.

Потребуется некоторые обозначения и утверждения.

Для целого n, пусть $P^{-}(n)$ и $P^{+}(n)$ обозначают наименьший и наибольший простой делитель n. Если $P^+(n) \le y$ мы называем число *n y* – гладким. Введем определение

$$\psi(x,y) = \{ n \le x, P^+(n) \le y \},$$

$$\varphi(x,y) = \{ n \le x, P^-(n) \le y \}.$$

Общеизвестны следующие утверждения.

Утверждение 1. Для $1 \le y \le x$ справедливо

$$|\varphi(x,y)| \le cx/\log y$$
.

Утверждение 2. Пусть $2 \le y \le x$, $v = \log x / \log y u \ e > 0$ - произвольное фиксированное число и $v \le y^{1-\varepsilon}$. Тогда справедлива формула

$$|\psi(x,y)| = xv^{-(1+o(1))v}, v \rightarrow \infty.$$

Пусть натуральное $n = n_1 n_2$, где

$$P^{+}(n_1) \le y, P^{-}(n_2) \ge y.$$

Пусть N(x, y, z) обозначает множество

$$\{n \leq x : n_1 > z.\}$$

В статье [1] была получена верхняя оценка для N(x, y, z). С помощью более тонких аргументов мы получаем более точную по порядку оценку на множество N(x, y, z).

Утверждение 3. Пусть $y \le z \le x$, вещественное число u определяется равенством $u = \log z / \log y$. Пусть для произвольного фиксированного e > 0 выполнено

$$\log x/\log y \leq y^{1-e}$$
.

Тогда справедлива оценка

$$|N(x,y,z)| \prec x \exp \left\{-\left(1+o(1)\right) u \log u\right\},$$

при $u \to \infty$.

Доказательство. Справедливо следующее соотношение

$$|N(x,y,z)| = \sum_{z \le n \le x, P+(n) \le y} \varphi(x/n,y).$$

Последнюю сумму разобьем на 2 части.

$$\sum_{z \le n \le x/y, P+(n) \le y} \varphi(x/n, y) +$$

$$+ \sum_{x/y \le n \le x, P+(n) \le y} \varphi(x/n, y).$$

Последнее же слагаемое оценивается через множество y – гладких чисел, не превосходящих x, то есть величиной

$$x \exp \left\{-\left(1+o(1)\right) u \log u\right\}.$$

Разберемся с первой суммой.
$$\sum_{z \le n \le x/y, \ P+(n) \le y} \varphi(x/n, y) \le \\ \le (x/\log y) \sum_{z \le n \le x/y, \ P+(n) \le y} 1/n.$$

Разберемся с последней суммой, применив преобразование Абеля.

$$\sum_{z \leq n \leq x/y, P+(n) \leq y} 1/n \leq$$

$$\leq \left(\left| \psi(x/y, y) \right| - \left| \psi(z, y) \right| \right) / (x/y) +$$

$$+ \int_{z}^{x/y} \left\{ \left| \psi(t, y) \right| - \left| \psi(z, y) \right| \right\} / t^{2} dt$$

Делаем замену переменной в интеграле $t \to h$, которая связывает переменные взаимно-однозначным соотношением $t = y^h$. Интеграл преобразуется к виду

$$(\log y)^*$$

$$* \int_{u}^{\log x/\log y} \{ |\psi(y^h, y)| - |\psi(y^u, y)| \} / y^h dh$$

Подставляя верхние оценки на множество гладких чисел (Утверждение 2) и выполняя несложные вычисления, мы получаем требуемое. Утверждение 3 доказано.

3. Доказательство основного результата.

Будем предполагать (как и ранее было указано), что A=B. Введем параметр $u=u(x)>1,\; y=y\left(x\right)\;<\;x,\; z=y^u$.

Рассмотрим множество

$$N_1 = \{ n < x : n_1 < z \}.$$

Исходя из оценок на множество N(x,y,z) легко видеть, что

$$|[1,x] \setminus N_1| =$$

$$= |N(x,y,z)| \le$$

$$\le x \exp \{-(1+o(1)) u \log u \}.$$

Далее будем рассматривать только лишь числа $n \in N_1(x,y,z)$ преставимые в виде a_1a_2 , где a_1 , $a_2 \in A$. Сделаем следующее наблюдение. Если п не принадлежит множеству AA, то либо n_1 не принадлежит множеству A либо n_2 не принадлежит A . Значит множество таких элементов не превосходит S1 + S2, где по определению

$$S_1 = |\{n : n_1 \notin A\}|,$$

 $S_2 = |\{n : n_2 \notin A\}|.$

Оценим сначала сверху S_1 , применяя частное суммирование и огрубляя суммирование по всем числам из дополнения множества A:

$$S_{1} \leq \sum_{m \leq z, m \notin A} \varphi(x/m, y) \leq$$

$$\leq x/\log y \sum_{m \leq z, m \notin A} (1/m) \leq$$

$$\leq ux/(\log \log y)^a$$
.

Оценим теперь S_2 сверху. Сперва обозначим

$$s(A)(t) = |\{(N \setminus A) \cap [1,t]\}|.$$

Поэтому мы можем оценить величину $\,S_2\,$ таким образом

$$S_2 \leq \sum_{d: d \leq z, P+(d) \leq y} s(A)(x/d) \leq$$

$$\leq x \log y / (\log \log x)^a$$
.

Следовательно множество исключений складывается из величин S1, S2 и N(x,y,z). Иными словами имеет место неравенство $|s(AB)\cap [1,x]|<|N(x,y,z)|+S_1+S_2$. Подбирая должным образом параметры $u=u(x),\,y=y(x),$ мы приходим к требуемой оценке. Терема доказана..

Публикация выполнена в рамках государственного задания ФГУ ФНЦ НИИСИ РАН по теме № FNEF-2022-0011.

On the Product of Sets with Density 1 and Its Addition

Y. N. Shteinikov

Abstract. S. Bettin, D. Koukoulopuos and C. Sanna proved in 2021 that the set of products of two arbitrary sets of integer with unit density is again a set with density of one. Article 3 of the authors also provides the top grades for the so-called corresponding complement sets under some special constraints. This article provides similar estimates for weaker restrictions.

Keywords: density, subsets, product

Литература

1. S.Bettin; D. Koukoulopoulos, C. Sanna A note on the natural density of product sets. Bull. Lond. Math. Soc. 53, No. 5, 1407-1413 (2021).