

Применение технологии OpenCL для

ускорения вычисления интегралов

А.А. Бурцев

ФГУ ФНЦ НИИСИ РАН, Москва, Россия, burtsev@niisi.msk.ru

Аннотация. Статья посвящена применению технологии OpenCL, позволяющей использовать мощные

ресурсы графических процессоров для повышения быстродействия вычислительных программ. Рассматрива-

ются варианты параллельных программ, разработанных для ускорения операции вычисления интегралов в

среде OpenCL.

Ключевые слова: параллельное программирование, технология OpenCL, гетерогенные си-

стемы, численные методы вычисления интегралов

1. Введение

Современные высокопроизводительные си-

стемы для ускорения вычислительных про-

грамм, как правило, предлагают освоить те или

иные особые технологии разработки параллель-

ной программы, ориентированные на исполне-

ние такой программы на многоядерных процес-

сорах с общей памятью (OpenMP [1, п.5.1]) или

на семействе компьютеров, связанных сетью

(MPI [1, п.5.2]). Однако, сегодня можно ускорить

выполнение своей вычислительной программы

даже на одном компьютере, если в его составе

имеется мощная видеокарта, которая поддержи-

вает технологию OpenCL [2].

Технология OpenCL позволяет ускорить вы-

числительную программу за счёт её особого рас-

параллеливания для последующего её исполне-

ния на массиве однородных специализирован-

ных процессоров, функционирующих в составе

современной графической видеокарты. Сначала

аналогичную технологию (CUDA) предложила

компания NVIDIA, потом − компания Apple, а

Khronos Group приняла эту технологию за ос-

нову и довела до стандарта, назвав её OpenCL

(Open Computing Language).

Данная статья продолжает знакомство с тех-

нологией OpenCL, начатое автором в работах [3-

5]. В них рассматривались приёмы разработки в

среде OpenCL эффективных программ для реше-

ния отдельных задач линейной алгебры и цифро-

вой обработки сигналов. В частности, рассмат-

ривались варианты построения по технологии

OpenCL программ, ускоряющих операцию пере-

множения больших матриц, и программ, ускоря-

ющих в среде OpenCL выполнение операции

быстрого преобразования Фурье (БПФ для ком-

плексных векторов большой длины вида N=2P).

Полученный опыт разработки OpenCL-

программ позволяет утверждать, что с помощью

технологии OpenCL действительно можно суще-

ственно ускорить выполнение таких вычисли-

тельных программ, в которых требуется осу-

ществлять однотипные операции над огром-

ными массивами данных. Так, например, опера-

цию перемножения больших матриц веществен-

ных чисел (размером 2048×2048) удалось уско-

рить примерно в 15 раз (см. табл. 6 в [3]) на

обычном настольном компьютере с универсаль-

ным процессором CPU Intel i59400 (с частотой

2.9 ГГц) и встроенным графическим процессо-

ром GPU UHD 630 (с частотой 350 МГц). А на

компьютере с процессором CPU Intel i3-2100

(3.1 ГГц) и подключённой специализированной

видеокартой NVidia GeForce 1050ti (1392 МГц)

удалось добиться ускорения для той же опера-

ции в 95 раз (см. табл. 9 в [3]). На тех же компь-

ютерах удалось значительно ускорить и опера-

цию БПФ для комплексных векторов: например,

для векторов длины N=224 получены показатели

ускорения соответственно в 32 раза и в 190 раз

(см. табл. 1 и табл. 2 в [4]).

Следует, однако, заметить, что для соверше-

ния в среде OpenCL операций над массивами

приходится непроизводительно тратить время

на передачу исходных данных из основной па-

мяти компьютера в память OpenCL-устройства,

а после – копировать обратно результаты совер-

шённой операции. И поэтому можно надеяться,

что для вычислительных задач, в которых такие

передачи данных сведены к минимуму (или во-

обще отсутствуют), применение технологии

OpenCL позволит обеспечить более значитель-

ные показатели ускорения. Приближённое вы-

числение интегралов как раз и относится к такой

группе вычислительных задач, выполнение ко-

торых можно легко распараллелить, а передачи

данных свести с минимуму.

20

2. Последовательная программа

для вычисления интегралов

Необходимость приближённого вычисления

интегралов возникает всякий раз, когда невоз-

можно (или затруднительно) выразить требуе-

мый интеграл аналитическим методом в виде за-

конченной формулы с применением элементар-

ных функций. Известен целый ряд подобных так

называемых «неберущихся» интегралов (см.

[6]). Среди них отметим интеграл Френеля:

 ∫ 𝑠𝑖𝑛(𝑥2) 𝑑𝑥

а также интеграл Пуассона:

∫ 𝑒−𝑥2
𝑑𝑥

В дальнейшем будем использовать формулы

этих интегралов при демонстрации примеров

применения программ, разработанных автором в

среде OpenCL для приближённого вычисления

интегралов.
Для вычисления интегралов применяются

разнообразные численные методы. Самый про-

стой из них – метод прямоугольников. Он позво-

ляет для интеграла вида:

∫ 𝑓(𝑥) 𝑑𝑥
𝐵

𝐴

получить приближённое значение по формуле:

𝑆 = ℎ × ∑ 𝑓(𝑥𝑘) ,

𝑁−1

𝑘=0

где: ℎ =
𝐵−𝐴

𝑁
, 𝑥𝑘 = 𝐴 + 𝑘 ∙ ℎ ,

вычислив значение интегрируемой функции

лишь в нескольких точках заданного отрезка.

Точность вычисления по такой формуле

определяется числом N, на которое разбивается

отрезок интегрирования [A,B]. И значение инте-

грала вычисляется, как сумма площадей всех

прямоугольников, образованных в результате та-

кого разбиения. Предполагается, что для дости-

жения лучшей точности следует задавать боль-

шее значение N.

В обычной (последовательной) программе

алгоритм вычисления интеграла по формуле

прямоугольников можно выразить такой Си-

функцией:

real Intgrl(int N, real A, real B){

 int k; real x, h, Sum;

 Sum=0.0; h= (B-A)/(real)N;

 for (k=0; k < N; k++)

 { x = A + k*h; Sum= Sum + F(x); }

 return (Sum*h);

}//Intgrl

Предполагается, что в программе предвари-

тельно определяется тип real для представления

вещественных чисел с одинарной:

#define real float

или двойной точностью:

#define real double

а также Си-функция F для вычисления интегри-

руемой функции. При этом формулу для вычис-

ления такой функции удобно задавать как define-

переменную:

#define FUNC sin(x*x) /* для Френеля */

//#define FUNC exp(-x*x) /* для Пуассона */
real F(real x) { return FUNC; }

Это позволяет быстро перенастроить всю

программу на вычисление интеграла другой

функции и/или для другого типа вещественных

чисел.

3. Программа для вычисления

интегралов в среде OpenCL

В среде OpenCL, где могут параллельно

функционировать несколько вычислительных

ядер в качестве исполнителей, можно обеспе-

чить одновременное вычисление значений инте-

грируемой функции сразу в нескольких точках.

Просуммировав затем эти значения, можно в

итоге получить результат интегрирования значи-

тельно быстрее. Но для организации такого про-

цесса параллельных вычислений должна быть

построена соответствующая OpenCL-

программа, т.е. программа, осуществляющая

требуемое распараллеливание в среде OpenCL.

Всякая программа, разработанная в расчёте

на её параллельное исполнение в среде OpenCL,

состоит из основной программы (OpenCL-при-

ложения на языке Си) и нескольких так называе-

мых процедур ядра (на языке OpenCL). Основ-

ная программа запускается на основном процес-

соре (хосте), подготавливает OpenCL-среду и пе-

риодически запускает в ней приготовленные

процедуры ядра параллельно сразу на всех её

вычислительных узлах − так называемых обра-

батывающих элементах (processing element).

Для подготовки OpenCL-среды необходимо

проинициализировать OpenCL-платфому, де-

скрипторы OpenCL-устройств, приготовить

OpenCL-контекст и создать в нём дескриптор

очереди команд. Требуется также приготовить

объекты для представления в памяти OpenCL-

устройства данных, подлежащих обработке, де-

скриптор для каждой процедуры ядра, и особый

объект, содержащий в откомпилированной

форме код всех процедур ядра. Как обеспечить

все эти подготовительные действия, подробно

объяснялось в предыдущих статьях автора (см.

21

п. 2.3-2.5 в [3] и п.3.2 в [4]).

Здесь же сосредоточим внимание, главным

образом, на процедурах ядра, отражающих спе-

цифику выполнения задачи интегрирования, и

той части основной программы, которая обеспе-

чивает их запуск и параллельное исполнение на

массиве вычислительных ядер.

3.1. Процедуры OpenCL-ядра для

вычисления интеграла
Вычисление значения интеграла в среде

OpenCL выполним в два этапа. На первом этапе

будем запускать на всех исполнителях проце-

дуру ядра _Intgrl (см. далее), а на втором этапе

запустим процедуру ядра _Sum лишь на одном

исполнителе.

Процедуры ядра, предназначенные для ис-

полнения в среде OpenCL на каждом обрабаты-

вающем элементе (ОЭ), подготовим в предполо-

жении, что при их параллельном запуске стано-

вятся известны общее количество таких испол-

нителей P, а также количество Q и размер WS

рабочих групп (Working Group), в которые их

можно объединять для совместной работы

(предполагается, что P делится нацело на WS).

И будем полагать, что в качестве параметров

процедуре ядра можно передать границы от-

резка интегрирования [A,B] и количество точек

N, на которых следует вычислять значения инте-

грируемой функции. А формула вычисления

предназначенной для интегрирования функции

задаётся (как и в Си-программе) с помощью de-

fine-переменной FUNC:

#define FUNC sin(x*x) /* для Френеля */

//#define FUNC exp(-x*x) /* для Пуассона */
real F(real x) { return FUNC; }

На первом этапе каждый исполнитель, узнав

свой глобальный номер i в массиве всех испол-

нителей, сам определяет количество и район рас-

положения точек отрезка, назначенных ему для

обработки. Для этого он определяет, сколько то-

чек должен обрабатывать каждый исполнитель

n=N/P, и с какой по порядку точки отрезка ему

следует их отсчитывать p= i×n. (Заметим, что в

случае, когда N не делится нацело на P, необхо-

димо скорректировать вычисление n=N/P+1 и

количество обрабатываемых точек для послед-

него исполнителя n=N−P.)

Вычисленные во всех точках значения функ-

ции необходимо просуммировать. Пусть сначала

каждый исполнитель просуммирует вычислен-

ные им значения функции в назначенных ему

точках. И полученную сумму S сразу умножит на

величину шага h=(B-A)/N.

Эти итоговые результаты, полученные таким

способом каждым исполнителем, снова необхо-

димо просуммировать. И процесс такого сумми-

рования тоже желательно распараллелить. Для

этого объединим исполнителей (ОЭ) в рабочие

группы. В локальной памяти каждой такой

группы выделим место для массива (L), в кото-

рый поручим каждому исполнителю этой

группы записать полученный им итоговый ре-

зультат на позицию, соответствующую его ло-

кальному номеру j (в этой группе). Дождёмся,

когда все исполнители группы совершат такую

запись. И после этого поручим одному из испол-

нителей группы (с номером j=0) просуммиро-

вать все значения массива L и записать итоговый

результат всей группы в глобальный массив Sum

на позицию, соответствующую номеру данной

рабочей группы g.

Такой алгоритм действий оформим в виде

процедуры ядра _Intgrl, которая будет запус-

каться на каждом исполнителе на 1-ом этапе:

__kernel void _Intgrl

(int N, real A, real B,

 __global real *Sum, __local real *L)

{ int i,k,n,p; real x,h,S,Ai ;

 P=get_global_size(0); // кол-во всех исполнителей

 i=get_global_id(0);// глоб.номер исполнителя

 j=get_local_id(0); //его локал.номер в Раб.Группе

 g=get_group_id(0); // номер Раб.Группы

 WS=get_local_size(0); // кол-во эл-тов в Раб.Группе
 n= N/P; if((N%P)>0) n=n+1;

 // n= кол-во точек для каждого исполнителя

 p= i*n; // номер его стартовой точки
 if((n+p)>N) { n=N-p; if(n<0) n=0; }

//n=кол-во точек,обрабатываемых этим исполнителем
 h=(B-A)/N; S=0.0; Ai= A+p*h;

 for (k=0; k<n; k++)

 { x=Ai+k*h; S= S + F(x); }

 L[j]= S*h;

 barrier(CLK_LOCAL_MEM_FENCE);

 if (j==0) { S= L[0];

 for (k=1; k<WS; k++) S= S+L[k];

 Sum[g]= S;

 }//if j==0

}//_Intgrl

Для завершения вычисления значения инте-

грала в среде OpenCL осталось выполнить (на 2-

ом этапе) процедуру ядра _Sum, чтобы просум-

мировать значения, которые были записаны в

массив Sum на 1-ом этапе:

__kernel void _Sum (int K,

__global real *Sum,__global real *Res)

{ int i; real S; S= 0.0;

 for (i=0; i<K; i++) S= S+Sum[i];

 *Res= S;

}//_Sum

Эти процедуры ядра вместе с необходимыми

макроопределениями сосредоточим в файле

“Intgrl.cl”, строки которого будут анализиро-

ваться при компоновке программного кода ядра

в основной программе.

22

3.2. Организация запуска процедур

ядра в основной программе
Предположим, что в основной программе

уже осуществлены все необходимые действия по

подготовке OpenCL-среды и в глобальной па-

мяти OpenCL-устройства приготовлены объекты

для представления массива Sum и результата ин-

тегрирования Res:

cl_uint szM= sizeof(cl_mem);

cl_uint szR= sizeof(real);

cl_mem memSum=clCreateBuffer(context,

CL_MEM_READ_WRITE, Q*szR, NULL, NULL);

cl_mem memRes=clCreateBuffer(context,

CL_MEM_READ_WRITE, szR, NULL, NULL);

А также образован объект prgrm, содержа-

щий в откомпилированной форме код всех про-

цедур ядра, и для каждой процедуры ядра создан

дескриптор:

cl_kernel knI, knS;

 knI=clCreateKernel (prgrm, "_Intgrl",NULL);

 knS=clCreateKernel (prgrm, "_Sum", NULL);

Теперь для выполнения в среде OpenCL опе-

рации вычисления интеграла оформим функцию

clIntgrl (с такими же параметрами, как и у Си-

функции Intgrl, описанной в п.2):

real clIntgrl(int N, real A, real B)

Для осуществления операции вычисления

интеграла в среде OpenCL в теле этой функции

предусмотрим последовательность действий из

следующих 5-ти частей:

1. Назначение 5-ти фактических параметров

для процедуры ядра _Intgrl:

cl_uint szI= sizeof(int);

clSetKernelArg(knI,0,szI,&N);

clSetKernelArg(knI,1,szR,&A);

clSetKernelArg(knI,2,szR,&B);

clSetKernelArg(knI,3,szM,&memSum);

clSetKernelArg(knI,4, szR*WS, NULL);

2. Запуск процедуры ядра _Intgrl в среде

OpenCL на множестве из P исполнителей, сосре-

доточенных в рабочих группах по WS элементов

в каждой, с ожиданием её завершения всеми ис-

полнителями:

size_t gWS[1]={P}; size_t lWS[1]={WS};

cl_event evI;

clEnqueueNDRangeKernel(cmndQ,

 knI,1,NULL,gWS,lWS,0,NULL,&evI);

clFinish(cmndQ);

3. Назначение 3-х фактических параметров

для процедуры ядра _Sum:

clSetKernelArg(knS,0,szI,&Q);

clSetKernelArg(knS,1,szM,&memSum);

clSetKernelArg(knS,2,szM,&memRes);

4. Запуск процедуры ядра _Sum на одном ис-

полнителе с ожиданием её завершения:

size_t gWS[0]={1}; cl_event evS;

clEnqueueNDRangeKernel(cmndQ,

 knS,1,NULL,gWS,NULL,0,NULL,&evS);

clFinish(cmndQ);

5. Выгрузка полученного результата интегри-

рования из объекта memRes:

real IntRes;

clEnqueueReadBuffer(cmndQ,

 memRes,CL_TRUE,0,szR,&IntRes,0,0,0);

 return IntRes;

4. Результаты ускорения опера-

ции вычисления интегралов в

среде OpenCL

Чтобы оценить, насколько удалось ускорить

операцию вычисления интеграла c помощью

применения технологии OpenCL, была состав-

лена программа (на языке Си), которая выпол-

няла операцию вычисления интеграла два раза.

Сначала она вызывала функцию Intgrl для обыч-

ного (последовательного) вычисления интеграла

основным процессором, а затем вызывала функ-

цию clIntgrl, чтобы подготовить OpenCL-среду

и выполнить в ней ту же операцию множеством

параллельно функционирующих вычислитель-

ных ядер OpenCL-устройства.

Данная программа была разработана как кон-

сольное приложение в среде MS Visual Studio

2017. Она компоновалась с различными вариан-

тами задания define-переменных FUNC и real с

тем, чтобы настроить её на вычисление различ-

ных интегралов с одинарной и двойной точно-

стью представления вещественных чисел.

Программа запускалась в различных вариан-

тах компоновки на двух разных платформах. Под

ОС Windows-10 на аппаратной конфигурации,

содержащей основной процессор CPU Intel-

i59400 с частотой 2.9 Ггц и встроенный графиче-

ский процессор GPU UHD 630 с частотой 350

МГц («платформа Intel»). И под ОС Windows-7

на аппаратной конфигурации, содержащей про-

цессор Intel i3-2100 с частотой 3.1 Ггц и ви-

деокарту NVidia GeForce 1050ti с частотой 1392

Мгц («платформа NVidia»).

Варианты программы, скомпонованные для

вещественных чисел одинарной точности, мно-

гократно прогонялись для вычисления представ-

ленных ранее интегралов Френеля и Пуассона

на обозначенных отрезках с заданием различ-

ного количества точек N. При этом замерялись

усреднённые показатели времени TCPU и TCL, за-

траченные на выполнение функций Intgrl и

clIntgrl, а также вычислялся коэффициент уско-

рения как отношение TCPU/TCL.

Результаты ускорения, полученные OpenCL-

программой вычисления интегралов для плат-

формы Intel, представлены в таблицах 1-2.

23

Таблица 1. Ускорение операции вычисления инте-

грала Френеля в среде OpenCL на платформе Intel

(для P=2048,WS=128 на [-5.0,+5.0] = 1.0558)

R N=2R TCPU TCL ТЯ K1 K2

10 1024 0.047454 0.218957 0.023915 0.217 1.9843

11 2048 0.094304 0.229216 0.024582 0.411 3.8363

12 4096 0.187053 0.211167 0.025249 0.886 7.4083

13 8192 0.377172 0.212242 0.026499 1.777 14.233

14 16384 0.769306 0.235982 0.028582 3.260 26.916

15 32768 1.519438 0.240124 0.032749 6.328 46.397

16 65536 3.035782 0.248154 0.042666 12.23 71.152

17 131072 5.895864 0.275902 0.060915 21.37 96.788

18 262144 11.860596 0.309114 0.097832 38.37 121.23

19 524288 23.913322 0.387304 0.172248 61.74 138.83

20 1048576 47.874524 0.571722 0.321914 83.74 148.72

21 2097152 95.581944 0.959715 0.620829 99.59 153.96

22 4194304 188.21317 1.557385 1.218161 120.9 154.51

23 8388608 382.50166 2.754440 2.413906 138.9 158.46

24 16777216 774.74099 5.146215 4.833396 150.5 160.29

 TCPU – время исполнения на CPU функции Intgrl

 TCL – время исполнения функции clIntgrl в OpenCL

 TЯ – время исполнения OpenCL-ядер

 (все времена даны в миллисекундах)

 K1 – общий коэффициент ускорения = TCPU / TCL

 K2 – «чистый» коэффициент ускорения = TCPU / TЯ

Таблица 2. Ускорение операции вычисления инте-

грала Пуассона в среде OpenCL на платформе Intel

(для P=2048,WS=128 на [-5.0,+5.0] = 1.7724)

R N=2R TCPU TCL ТЯ K1 K2

10 1024 0.042415 0.221982 0.023332 0.191 1.8179

11 2048 0.083851 0.210888 0.023999 0.398 3.4939

12 4096 0.166911 0.211253 0.024332 0.790 6.8597

13 8192 0.334737 0.216543 0.025082 1.546 13.346

14 16384 0.677476 0.250684 0.026665 2.703 25.407

15 32768 1.380362 0.243700 0.029665 5.664 46.532

16 65536 2.653926 0.242956 0.035999 10.92 73.722

17 131072 5.475312 0.259368 0.055832 21.11 98.068

18 262144 10.887064 0.279966 0.073748 38.89 147.63

19 524288 21.416330 0.349006 0.123498 61.36 173.41

20 1048576 43.283448 0.432322 0.223498 100.1 193.66

21 2097152 87.152944 0.719005 0.427664 121.2 203.79

22 4194304 173.91973 1.167820 0.831829 148.9 209.08

23 8388608 344.49520 1.949570 1.642242 176.7 209.77

24 16777216 693.86598 3.610980 3.259735 192.2 212.86

 TCPU – время исполнения на CPU функции Intgrl

 TCL – время исполнения функции clIntgrl в OpenCL

 TЯ – время исполнения OpenCL-ядер

 (все времена даны в миллисекундах)

 K1 – общий коэффициент ускорения = TCPU / TCL

 K2 – «чистый» коэффициент ускорения = TCPU / TЯ

Из этих таблиц видно, что с помощью приме-

нения технологии OpenCL операцию вычисле-

ния интегралов удаётся ускорить ещё в большей

степени, чем операции перемножения матриц и

быстрого преобразования Фурье. Так, например,

вычисление интеграла Френеля на отрезке [-

5.0,+5.0] с разбиением его на N=224 частей в

среде OpenCL ускоряется в 150 раз, а вычисле-

ние интеграла Пуассона – в 192 раза. Для срав-

нения напомним, что умножение матриц с таким

же количеством элементов (2048×2048=224) на

платформе Intel удавалось ускорить лишь в 15

раз, а операцию быстрого преобразования Фурье

(БПФ) для векторов длины N=224 – в 32 раза.

А с применением специализированной ви-

деокарты операцию вычисления интегралов

можно ускорить ещё в большей степени, что

подтверждают результаты прогона той же

OpenCL-программы для платформы NVidia,

представленные в таблицах 3-4.

Таблица 3. Ускорение операции вычисления инте-

грала Френеля в среде OpenCL на платформе NVidia

(для P=2048,WS=128 на [-5.0,+5.0] = 1.0558)

R N=2R TCPU TCL ТЯ K1 K2

10 1024 0.060003 0.201311 0.009088 0.298 6.6024

11 2048 0.120007 0.216712 0.008384 0.554 14.314

12 4096 0.240013 0.217312 0.007744 1.104 30.993

13 8192 0.490028 0.217512 0.008608 2.253 56.927

14 16384 0.960056 0.221812 0.009856 4.328 97.408

15 32768 1.920110 0.210412 0.011200 9.125 171.44

16 65536 3.880222 0.233813 0.012384 16.59 313.32

17 131072 7.860450 0.227613 0.017728 34.53 443.39

18 262144 15.540888 0.240213 0.027136 64.69 572.70

19 524288 31.001774 0.244814 0.044224 126.6 701.02

20 1048576 61.963544 0.296616 0.080928 208.9 765.66

21 2097152 124.00709 0.368021 0.127744 336.9 970.75

22 4194304 248.56421 0.465526 0.228480 533.9 1087.9

23 8388608 496.12838 0.704540 0.449536 704.2 1103.6

24 16777216 995.85696 1.197568 0.891712 831.6 1116.8

Таблица 4. Ускорение операции вычисления инте-

грала Пуассона в среде OpenCL на платформе NVidia

(для P=2048,WS=128 на [-5.0,+5.0] = 1.7724)

R N=2R TCPU TCL ТЯ K1 K2

10 1024 0.050003 0.213812 0.008480 0.234 5.8966

11 2048 0.110006 0.211612 0.008928 0.520 12.322

12 4096 0.230013 0.213912 0.008480 1.075 27.124

13 8192 0.450025 0.208111 0.009184 2.162 49.001

14 16384 0.960054 0.216012 0.007904 4.444 121.46

15 32768 1.820104 0.226412 0.009344 8.039 194.79

16 65536 3.600206 0.230813 0.010208 15.59 352.68

17 131072 7.160410 0.220812 0.011488 32.43 623.29

18 262144 14.280818 0.210812 0.014400 67.74 991.72

19 524288 28.961656 0.249014 0.021504 116.3 1346.8

20 1048576 57.323280 0.264815 0.033792 216.5 1696.4

21 2097152 115.50661 0.277015 0.060416 416.9 1911.8

22 4194304 231.16323 0.280016 0.095520 825.5 2420.1

23 8388608 461.52640 0.399522 0.152544 1155 3025.5

24 16777216 925.10291 0.521029 0.295296 1775 3132.8

В этих таблицах отмечено, что вычисление

интеграла Френеля на том же отрезке [-5.0,+5.0]

с разбиением на N=224 частей в среде OpenCL

ускоряется в 831 раз, а вычисление интеграла

Пуассона – в 1775 раза. Эти результаты можно

сравнить с показателями ускорения на той же

платформе (NVidia) операции перемножения

24

матриц такого же размера (224) и операции быст-

рого преобразования Фурье для векторов той же

длины, упомянутых ранее (95 и 190 раз).

5. Заключение

Полученные результаты практически под-

тверждают, что операция вычисления интегра-

лов, не требующая перекачки большого объёма

данных между основной памятью и памятью

OpenCL-устройства, в лучшей степени пригодна

для её ускорения с помощью применения техно-

логии OpenCL.

Публикация выполнена в рамках государ-

ственного задания ФГУ ФНЦ НИИСИ РАН

«Проведение фундаментальных научных иссле-

дований (47 ГП)» по теме № FNEF-2022-0004

«Разработка архитектуры, системных решений и

методов для создания микропроцессорных ядер

и коммуникационных средств семейства систем

на кристалле двойного назначения», Рег. №

122041100063-0.

Applying OpenCL Technology to

Accelerating the Calculation of Integrals

A.A. Burtsev

Abstract. The article focuses on the use of OpenCL technology, which allows you to use powerful GPU re-

sources to improve the performance of computing programs. Variants of parallel programs designed to accelerate the

operation of calculating integrals in the OpenCL environment are considered.

Keywords: parallel programming, OpenCL technology, heterogeneous systems, numerical methods

for calculating integrals.

Литература

1. В.В. Воеводин, Вл.В. Воеводин. Параллельные вычисления. Спб., БХВ-Петербург, 2004.

2. Официальный OpenCL–сайт организации Khronos Group, http://www.khronos.org/opencl/

3. А.А. Бурцев. Оптимизация операции перемножения матриц на основе технологии OpenCL.

«Труды НИИСИ РАН», Т. 10 (2020), № 5-6, 100–112.

4. А.А. Бурцев. Ускорение быстрого преобразования Фурье на основе технологии OpenCL.

«Труды НИИСИ РАН», Т. 11 (2021), № 4, 27–37.

5. А.А. Бурцев. Оптимизация операции быстрого преобразования Фурье в среде OpenCL. //

«Труды НИИСИ РАН», Т.12 (2022), №1-2, 11-27.

6. Неберущиеся интегралы, https://www.matematicus.ru/vysshaya-matematika/integralnoe-

ischislenie/neberushhiesya-integraly

