

Использование аппаратных средств
 профилирования для обеспечения

 информационной безопасности
 критически важных систем

В. А. Галатенко1, К. А. Костюхин2

1Федеральное государственное учреждение «Федеральный научный центр Научно-исследовательский инсти-
тут системных исследований Российской академии наук», Москва, РФ, galat@niisi.ras.ru;

2Федеральное государственное учреждение «Федеральный научный центр Научно-исследовательский инсти-
тут системных исследований Российской академии наук», Москва, РФ, kost@niisi.ras.ru

Аннотация. Работа посвящена исследованию возможностей применения аппаратных счетчиков произ-
водительности (специальных регистров центрального процессора) для выявления потенциальных угроз без-
опасности критически важных систем и комплексов. Авторами был доработан открытый прикладной про-
граммный интерфейс измерения производительности, с помощью которого осуществляется управление аппа-
ратными счетчиками.

Ключевые слова: счетчики производительности, информационная безопасность, атаки по
сторонним каналам, PAPI

1. Введение
Многие современные процессоры поддержи-

вают методы анализа программного кода за счет
использования аппаратных счетчиков (специ-
альных регистров, записывающих определен-
ные типы аппаратных событий). К примерам ап-
паратных событий относятся общее количество
циклов процессора, общее количество выпол-
ненных инструкций, количество выполненных
операций с плавающей запятой, количество про-
махов при доступе к кэш-памяти и т. д. Изна-
чально аппаратные счетчики использовались
специально для построения профилей выполне-
ния и последующей оптимизации, но они могут
выполнять и другую важную функцию — помо-
гать разработчикам и системным архитекторам
оперативно выявлять так называемые атаки по
сторонним каналам (side-channels attacks [1]). В
рамках этой работы была исследована возмож-
ность использования аппаратных счетчиков для
обнаружения таких атак и адаптирован про-
граммный интерфейс измерения производитель-
ности (Performance Application Programming
Interface, PAPI [2]) для аппаратной платформы,
работающей под управлением отечественного
операционной системы.

2. Архитектура PAPI
Целью проекта PAPI является разработка,

стандартизация и внедрение портативного и эф-
фективного интерфейса прикладного програм-
мирования для доступа к аппаратным средствам

профилирования. Сегодня PAPI стал стандартом
де-факто для разработчиков программного обес-
печения, имеющего доступ к аппаратным счет-
чикам производительности.

На рисунке 1 представлена архитектура PAPI.

Рис. 1. Архитектура PAPI

Существует два основных уровня PAPI: плат-
формо-независимый и платформо-зависимый,
которые скрывают от пользователя детали реа-
лизации доступа к аппаратным счетчикам кон-
кретного процессора. Для этого функции PAPI,
специфичные для платформы, могут использо-
вать расширения ядра, функции целевой опера-
ционной системы или язык ассемблера.

3. Интерфейсы PAPI
PAPI предоставляет пользователям интер-

фейсы верхнего и нижнего уровня, в которых
различается сложность настройки и использова-
ния. В настоящее время существуют реализации
интерфейса на языках высокого уровня, таких
как C и Fortran.

30

3.1. Интерфейс высокого уровня
Интерфейс высокого уровня состоит всего из

7 функций, обеспечивающих основные опера-
ции над аппаратными счетчиками: запуск, оста-
новка, чтение со сбросом и без сброса. В этом
случае пользователь может использовать только
события, предопределенные стандартом PAPI.
Функции интерфейса верхнего уровня исполь-
зуют интерфейс PAPI низкого уровня, чтобы из-
бавить пользователей от явных вызовов, таких
как функции инициализации библиотеки PAPI.

int PAPI_num_counters (void)
Инициализирует PAPI (если требуется). Воз-

вращает число аппаратных счетчиков.
int PAPI_start_counters
 (int *events, int len)
Инициализирует PAPI (если требуется). Свя-

зывает множество событий с аппаратными счет-
чиками. Запускает счетчики.

int PAPI_stop_counters
 (long long *vals, int alen)
Останавливает счетчики и сохраняет их зна-

чения в массиве vals.
int PAPI_accum_counters
 (long long *vals, int alen)
Прибавляет значения счетчиков к значениям

в массиве vals и обнуляет счетчики.
int PAPI_read_counters
 (long long *vals, int alen)
Считывает значения счетчиков в массив vals

и обнуляет счетчики.
int PAPI_flips
 (float *real_time,
 float *proc_time,
 long long *flpins,
 float *mflpins)
int PAPI_flops
 (float *real_time,
 float *proc_time,
 long long *flpins,
 float *mflpins)
int PAPI_ipc
 (float *real_time,
 float *proc_time,
 long long *ins,
 float *ipc)
Упрощенные вызовы для измерения числа

команд и операций с плавающей точкой, а также
частоты выполнения команд процессора. Кроме
того, эти функции возвращают реальное время
работы процессора, а также виртуальное время,
то есть время выполнения пользовательского
процесса.

Ниже приведен пример, иллюстрирующий
использование функций высокоуровневого ин-
терфейса PAPI. В нем происходит подсчет об-
щего числа команд и тактов процессора при вы-
полнении функции do_work.

#include <papi.h>

#define NUM_EVENTS 2

long long values[NUM_EVENTS];
unsigned int Events[NUM_EVENTS] =
{PAPI_TOT_INS, PAPI_TOT_CYC};

/* Стартовать счетчики */
PAPI_start_counters ((int*)Events,
NUM_EVENTS);

/* Интересующая нас функция */
do_work ();

/* Остановить счетчики и сохранить
их значения в массиве values */
ret = PAPI_stop_counters (values,
NUM_EVENTS);
3.2. Интерфейс низкого уровня

Низкоуровневый интерфейс обладает по
сравнению с интерфейсом высокого уровня рас-
ширенной функциональностью и большей эф-
фективностью. В его состав входит более 50 раз-
личных функций, которые можно разделить на
следующие группы:
- инициализация библиотеки PAPI;
- функции измерения времени;
- функции получения информации;
- служебные функции;
- функции управления множествами собы-

тий;
- функции управления аппаратными счетчи-

ками.
Далее показано использование низкоуровне-

вого интерфейса PAPI для подсчета общего
числа тактов процессора, а также числа команд
сопроцессора плавающей арифметики во время
вызова функции do_work.

#include <papi.h>

#define NUM_EVENTS 2

int Events[NUM_EVENTS] =
{PAPI_FP_INS,PAPI_TOT_CYC};
int EventSet;
long long values[NUM_EVENTS];

/* Инициализация PAPI */
ret = PAPI_library_init
 (PAPI_VER_CURRENT);

/* Создать множество событий */
ret = PAPI_create_eventset
 (&EventSet);

/* Добавить новые события */

31

ret = PAPI_add_events
 (&EventSet,
 Events,
 NUM_EVENTS);

/* Стартовать счетчики */
ret = PAPI_start (EventSet);

do_work(); /* Искомая функция */

/* Остановить счетчики и сохранить
результат в массиве values */
ret = PAPI_stop (EventSet,values);

В проекте PAPI предложено стандартизован-
ное, переносимое решение для профилирования
кода посредством управления аппаратными
счетчиками событий. На сегодняшний день су-
ществуют реализации PAPI в виде библиотек для
многих современных платформ. Следует отме-
тить также хорошую документированность про-
екта и простоту использования предлагаемых
интерфейсов.

Для используемой целевой системы авто-
рами была доработана и портирована версия
papi-c 3.9.0. Такой выбор объясняется слабой за-
висимостью этой версии от системных вызовов
современных ОС семейства Windows или Linux.

4. Потенциальные угрозы,
 которые можно выявлять
 с помощью аппаратных
 счетчиков
4.1. Атаки повторного использования
кода

Атаки повторного использования кода (Code
Reuse Attacks, CRA [3]), ставящие под угрозу це-
лостность потока управления программы,
направлены на изменение нормального потока
управления для выполнения вредоносных дей-
ствий. Среди примеров можно привести воз-
вратно-ориентированное программирование,
(Return Oriented Programming, ROP), используя
методы которого, злоумышленник получает кон-
троль над стеком вызовов, чтобы заменить адрес
возврата из функции. Другим примером явля-
ется переходо-ориентированное программиро-
вание (Jump Oriented Programming, JOP), в кото-
ром злоумышленник использует команды пере-
хода для объединения фрагментов вредоносного
кода.

Собранная с помощью аппаратных счетчиков
информация, такая как, например, события про-
маха в кэш-памяти или неправильные предсказа-
ния ветвления, является, на наш взгляд, хоро-
шим эвристическим индикатором атак этого

типа.
4.2. Внедрение кода

Атаки на внедрение кода (Code Injection [4])
реализуют вставки в атакуемое приложение вре-
доносного кода. Многие из атак этого типа вы-
полняются с помощью переполнения буфера и
могут быть выполнены различными способами.
В некоторых случаях, для изменения поведения
программы могут быть введены ложные данные,
такие как ложные показания датчиков в систе-
мах управления технологическим процессом.
Целями таких атак могут быть захват контроля,
саботаж или повреждение атакуемой системы
таким образом, чтобы помешать выполнению ее
миссии.

Для противодействия этим атакам можно ис-
пользовать эталонные профили выполнения
программы, построенные на аппаратных собы-
тиях во время ее первых «эталонных» запусков.
В дальнейшем аппаратные счетчики можно ис-
пользовать для выявления аномального поведе-
ния программы, т.е. отклонения текущего про-
филя выполнения от эталонного. В зависимости
от внедренного кода количество различных ап-
паратных событий, а также их соотношений (как
будет показано ниже) резко изменяется за корот-
кое время, что может служит индикатором та-
кого рода атак.
4.3. Атаки по сторонним каналам

Атаки этого типа обычно направлены на
кражу информации из целевой системы. Это мо-
гут быть пароли, ключи или другие секретные
данные.

Для извлечения нужной информации в насто-
ящее время злоумышленники все чаще прибе-
гают к атакам с использованием кэш-памяти:
Flush+Reload, Evict+Time, Prime+Probe,
Evict+Reload [1].

Все вышеперечисленные атаки порождают
определенные аппаратные события, такие, как,
например, промахи в кэш-памяти, что является
хорошим индикатором для их раннего обнаруже-
ния.
4.4. Атаки типа «отказ в
 обслуживании»

Некоторые атаки типа «отказ в обслужива-
нии» (Denial of Service, DoS) также могут быть
обнаружены с помощью аппаратных счетчиков.
Как и в п. 4.2 здесь следует использовать эталон-
ные профили выполнения программы, по-
скольку предполагается, что число, последова-
тельность возникновения и определенные соот-
ношения событий при нормальной работе при-
ложения сильно отличаются от работы во время
DoS атаки, которая обычно характеризуется
чрезвычайно высокой аппаратной активностью,

32

в частности должно серьезно возрасти число та-
ких событий, как промахи в TLB и запись в кэш-
память первого уровня [5].

5. Применение аппаратных
счетчиков в обеспечении
 информационной безопасности

В качестве экспериментальной платформы
был выбран процессор Intel Core I3-6100, под
управлением ОС Fedora Core 22. Для имитации
атаки использовался инструмент Mastik [6]. По-
скольку атаки по сторонним каналам с использо-
ванием кэш-памяти предполагают увеличение
числа промахов по кэш-памяти 3-го уровня (L3),
то вполне логично использовать это событие
(L3_MISS) в качестве индикатора потенциаль-
ной угрозы. Однако одного его недостаточно.
Сама логика приложения может предполагать
большое число событий L3_MISS, например,
при работе с большим числом данных, не храня-
щихся локально. Поэтому было предложено еще
одно событие (L1_REPL), показывающее, как
часто замещаются строки в кэш-памяти 1-го
уровня. Теперь если взять их отношение
L3_MISS / L1_REPL, то полученный индикатор
будет означать, что приложение значительно ис-
пользует память, но при этом часто очищает
кэш. Что может свидетельствовать о проводимой
атаке.

Последующие эксперименты показали, что
за время измерения атакуемые приложения
имели в несколько раз более высокое значение
предложенного индикатора (в среднем, в 5 раз),
по сравнению с его же значением в обычном ре-
жиме работы.

Также были построены профили типичного
выполнения вычислительных задач. В качестве
критерия было предложено использовать отно-
шение числа выполненных команд сопроцессора
плавающей арифметики к числу всех выполнен-
ных команд (профиль строился для каждого кри-
тического потока управления). Замеры проводи-

лись в определенных заранее контрольных точ-
ках. Эксперименты показали, что разброс в зна-
чениях критерия при разных запусках не превы-
сил 3%. Такой подход позволяет устранить про-
блему недетерминизма аппаратных счетчиков
[7]. В профиль были включены и события по вы-
полнению перехода и выполнению инструкции
ветвления. Учитывая недерминизм аппаратных
счетчиков, сравнение профилей выполнения за-
дачи в эксплуатационном режиме с построен-
ными в ходе настройки эталонными профилями
проводилось по контрольным событиям пере-
хода и ветвления (были выделены контрольные
последовательности событий, нарушение кото-
рых является признаком потенциального сбоя
или атаки). Стресс-тестирование показало, что
предложенный подход позволил успешно выяв-
лять некорректные последовательности собы-
тий.

6. Заключение
Был проведен анализ потенциальных угроз,

реализован прикладной программный интер-
фейс доступа к аппаратным счетчикам произво-
дительности, проведены исследования, подтвер-
ждающие изначальное предположение о том,
что профиль выполнения атакуемой системы,
построенный на определенных аппаратных со-
бытиях, меняется, что позволяет построить эф-
фективную систему мониторинга и защиты.

В качестве направления дальнейших иссле-
дований видится расширение списка индикато-
ров, позволяющих выявлять проникновение в
систему программ-злоумышленников, путем
анализа изменения количества аппаратных со-
бытий в их различных комбинациях, во время
имитации атак по сторонним каналам.

«Публикация выполнена в рамках государ-
ственного задания по проведению фундамен-
тальных исследований по теме «Исследование и
реализация программной платформы для пер-
спективных многоядерных процессоров»
(FNEF-2022-002).»

Using Hardware Performance Counters
 to Ensure Information Security of Critical

 Systems
Vladimir Galatenko, Konstantin Kostiukhin

Abstract. The article discusses the possibility of using hardware performance counters, commonly used in the
creating of system execution profiles, to identify potential security threats to critically important systems and com-
plexes. The authors have ported an open Performance Application Programming Interface (PAPI), which is used to
manage hardware counters.

33

Keywords: performance counters, information security, side-channels attacks, PAPI

Литература
1. F. Liu, Y. Yarom, Q. Ge, G. Heiser, R.B. Lee. Last-Level Cache Side-Channel Attacks are Practical,

Security Privacy. In Proceedings of the 2015 IEEE Symposium on Security and Privacy, San Jose, CA,
USA, 17–21 May 2015.

2. PAPI User's Guide, http://icl.cs.utk.edu/papi/
3. Vishnyakov A.V., Nurmukhametov A.R., Kurmangaleev S.F., Gaisaryan S.S. Method for analysis of

code-reuse attacks. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP
RAS). 2018;30(5):31-54. (In Russ.)

4. Oliver Moradov. Code Injection in Brief: Types, Examples, and Mitigation, 2022, https://bright-
sec.com/blog/code-injection/

5. Pablo Pessoa do Nascimento, Paulo Pereira, Jr Marco Mialaret, Isac Ferreira, Paulo Maciel. A meth-
odology for selecting hardware performance counters for supporting non-intrusive diagnostic of flood
DDoS attacks on web servers, Computers & Security, Volume 110, 2021, https://www.sciencedi-
rect.com/science/article/pii/S0167404821002583

6. Mastik: A Micro-Architectural Side-Channel Toolkit, https://github.com/0xADE1A1DE/Mastik
7. S. Das, J. Werner, M. Antonakakis, M. Polychronakis, F. Monrose. SoK: The Challenges, Pitfalls,

and Perils of Using Hardware Performance Counters for Security. 2019 IEEE Symposium on Security and
Privacy (SP), San Francisco, CA, USA, 2019, pp. 20-38.

