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Аннотация. Работа посвящена исследованию возможностей применения аппаратных счетчиков произ-
водительности (специальных регистров центрального процессора) для выявления потенциальных угроз без-
опасности критически важных систем и комплексов. Авторами был доработан открытый прикладной про-
граммный интерфейс измерения производительности, с помощью которого осуществляется управление аппа-
ратными счетчиками. 
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1. Введение 
Многие современные процессоры поддержи-

вают методы анализа программного кода за счет 
использования аппаратных счетчиков (специ-
альных регистров, записывающих определен-
ные типы аппаратных событий). К примерам ап-
паратных событий относятся общее количество 
циклов процессора, общее количество выпол-
ненных инструкций, количество выполненных 
операций с плавающей запятой, количество про-
махов при доступе к кэш-памяти и т. д. Изна-
чально аппаратные счетчики использовались 
специально для построения профилей выполне-
ния и последующей оптимизации, но они могут 
выполнять и другую важную функцию — помо-
гать разработчикам и системным архитекторам 
оперативно выявлять так называемые атаки по 
сторонним каналам (side-channels attacks [1]). В 
рамках этой работы была исследована возмож-
ность использования аппаратных счетчиков для 
обнаружения таких атак и адаптирован про-
граммный интерфейс измерения производитель-
ности (Performance Application Programming 
Interface, PAPI [2]) для аппаратной платформы, 
работающей под управлением отечественного 
операционной системы. 

2. Архитектура PAPI 
Целью проекта PAPI является разработка, 

стандартизация и внедрение портативного и эф-
фективного интерфейса прикладного програм-
мирования для доступа к аппаратным средствам 

профилирования. Сегодня PAPI стал стандартом 
де-факто для разработчиков программного обес-
печения, имеющего доступ к аппаратным счет-
чикам производительности. 

На рисунке 1 представлена архитектура PAPI. 
 

 
Рис. 1. Архитектура PAPI 

Существует два основных уровня PAPI: плат-
формо-независимый и платформо-зависимый, 
которые скрывают от пользователя детали реа-
лизации доступа к аппаратным счетчикам кон-
кретного процессора. Для этого функции PAPI, 
специфичные для платформы, могут использо-
вать расширения ядра, функции целевой опера-
ционной системы или язык ассемблера. 

3. Интерфейсы PAPI 
PAPI предоставляет пользователям интер-

фейсы верхнего и нижнего уровня, в которых 
различается сложность настройки и использова-
ния. В настоящее время существуют реализации 
интерфейса на языках высокого уровня, таких 
как C и Fortran. 
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3.1. Интерфейс высокого уровня 
Интерфейс высокого уровня состоит всего из 

7 функций, обеспечивающих основные опера-
ции над аппаратными счетчиками: запуск, оста-
новка, чтение со сбросом и без сброса. В этом 
случае пользователь может использовать только 
события, предопределенные стандартом PAPI. 
Функции интерфейса верхнего уровня исполь-
зуют интерфейс PAPI низкого уровня, чтобы из-
бавить пользователей от явных вызовов, таких 
как функции инициализации библиотеки PAPI. 

int PAPI_num_counters (void) 
Инициализирует PAPI (если требуется). Воз-

вращает число аппаратных счетчиков. 
int PAPI_start_counters 
  (int *events, int len) 
Инициализирует PAPI (если требуется). Свя-

зывает множество событий с аппаратными счет-
чиками. Запускает счетчики. 

int PAPI_stop_counters 
  (long long *vals, int  alen) 
Останавливает счетчики и сохраняет их зна-

чения в массиве vals. 
int PAPI_accum_counters 
  (long long *vals, int  alen) 
Прибавляет значения счетчиков к значениям 

в массиве vals и обнуляет счетчики. 
int PAPI_read_counters 
  (long long *vals, int  alen) 
Считывает значения счетчиков в массив vals 

и обнуляет счетчики. 
int PAPI_flips 
  (float *real_time, 
   float *proc_time, 
   long long *flpins, 
   float *mflpins) 
int PAPI_flops 
  (float *real_time, 
   float *proc_time, 
   long long *flpins, 
   float *mflpins) 
int PAPI_ipc 
  (float *real_time, 
   float *proc_time, 
   long long *ins, 
   float *ipc) 
Упрощенные вызовы для измерения числа 

команд и операций с плавающей точкой, а также 
частоты выполнения команд процессора. Кроме 
того, эти функции возвращают реальное время 
работы процессора, а также виртуальное время, 
то есть время выполнения пользовательского 
процесса. 

Ниже приведен пример, иллюстрирующий 
использование функций высокоуровневого ин-
терфейса PAPI. В нем происходит подсчет об-
щего числа команд и тактов процессора при вы-
полнении функции do_work. 

#include <papi.h> 
 
#define NUM_EVENTS 2 
 
long long values[NUM_EVENTS]; 
unsigned int Events[NUM_EVENTS] = 
{PAPI_TOT_INS, PAPI_TOT_CYC}; 
 
/* Стартовать счетчики */ 
PAPI_start_counters ((int*)Events, 
NUM_EVENTS); 
 
/* Интересующая нас функция */ 
do_work (); 
 
/* Остановить счетчики и сохранить 
их значения в массиве values */ 
ret = PAPI_stop_counters (values, 
NUM_EVENTS); 
3.2. Интерфейс низкого уровня 

Низкоуровневый интерфейс обладает по 
сравнению с интерфейсом высокого уровня рас-
ширенной функциональностью и большей эф-
фективностью. В его состав входит более 50 раз-
личных функций, которые можно разделить на 
следующие группы: 
- инициализация библиотеки PAPI; 
- функции измерения времени; 
- функции получения информации; 
- служебные функции; 
- функции управления множествами собы-

тий; 
- функции управления аппаратными счетчи-

ками. 
Далее показано использование низкоуровне-

вого интерфейса PAPI для подсчета общего 
числа тактов процессора, а также числа команд 
сопроцессора плавающей арифметики во время 
вызова функции do_work. 
 
#include <papi.h> 
 
#define NUM_EVENTS 2 
 
int Events[NUM_EVENTS] = 
{PAPI_FP_INS,PAPI_TOT_CYC}; 
int EventSet; 
long long values[NUM_EVENTS]; 
 
/* Инициализация PAPI */ 
ret = PAPI_library_init 
          (PAPI_VER_CURRENT); 
 
/* Создать множество событий */ 
ret = PAPI_create_eventset 
          (&EventSet); 
 
/* Добавить новые события */ 
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ret = PAPI_add_events 
          (&EventSet, 
           Events, 
           NUM_EVENTS); 
 
/* Стартовать счетчики */ 
ret = PAPI_start (EventSet); 
 
do_work(); /* Искомая функция */ 
 
/* Остановить счетчики и сохранить 
результат в массиве values */ 
ret = PAPI_stop (EventSet,values); 
 

В проекте PAPI предложено стандартизован-
ное, переносимое решение для профилирования 
кода посредством управления аппаратными 
счетчиками событий. На сегодняшний день су-
ществуют реализации PAPI в виде библиотек для 
многих современных платформ. Следует отме-
тить также хорошую документированность про-
екта и простоту использования предлагаемых 
интерфейсов. 

Для используемой целевой системы авто-
рами была доработана и портирована версия 
papi-c 3.9.0. Такой выбор объясняется слабой за-
висимостью этой версии от системных вызовов 
современных ОС семейства Windows или Linux. 

4. Потенциальные угрозы, 
 которые можно выявлять 
 с помощью аппаратных 
 счетчиков 
4.1. Атаки повторного использования 
кода 

Атаки повторного использования кода (Code 
Reuse Attacks, CRA [3]), ставящие под угрозу це-
лостность потока управления программы, 
направлены на изменение нормального потока 
управления для выполнения вредоносных дей-
ствий. Среди примеров можно привести воз-
вратно-ориентированное программирование, 
(Return Oriented Programming, ROP), используя 
методы которого, злоумышленник получает кон-
троль над стеком вызовов, чтобы заменить адрес 
возврата из функции. Другим примером явля-
ется переходо-ориентированное программиро-
вание (Jump Oriented Programming, JOP), в кото-
ром злоумышленник использует команды пере-
хода для объединения фрагментов вредоносного 
кода. 

Собранная с помощью аппаратных счетчиков 
информация, такая как, например, события про-
маха в кэш-памяти или неправильные предсказа-
ния ветвления, является, на наш взгляд, хоро-
шим эвристическим индикатором атак этого 

типа. 
4.2. Внедрение кода 

Атаки на внедрение кода (Code Injection [4]) 
реализуют вставки в атакуемое приложение вре-
доносного кода. Многие из атак этого типа вы-
полняются с помощью переполнения буфера и 
могут быть выполнены различными способами. 
В некоторых случаях, для изменения поведения 
программы могут быть введены ложные данные, 
такие как ложные показания датчиков в систе-
мах управления технологическим процессом. 
Целями таких атак могут быть захват контроля, 
саботаж или повреждение атакуемой системы 
таким образом, чтобы помешать выполнению ее 
миссии. 

Для противодействия этим атакам можно ис-
пользовать эталонные профили выполнения 
программы, построенные на аппаратных собы-
тиях во время ее первых «эталонных» запусков. 
В дальнейшем аппаратные счетчики можно ис-
пользовать для выявления аномального поведе-
ния программы, т.е. отклонения текущего про-
филя выполнения от эталонного. В зависимости 
от внедренного кода количество различных ап-
паратных событий, а также их соотношений (как 
будет показано ниже) резко изменяется за корот-
кое время, что может служит индикатором та-
кого рода атак. 
4.3. Атаки по сторонним каналам 

Атаки этого типа обычно направлены на 
кражу информации из целевой системы. Это мо-
гут быть пароли, ключи или другие секретные 
данные. 

Для извлечения нужной информации в насто-
ящее время злоумышленники все чаще прибе-
гают к атакам с использованием кэш-памяти: 
Flush+Reload, Evict+Time, Prime+Probe, 
Evict+Reload [1]. 

Все вышеперечисленные атаки порождают 
определенные аппаратные события, такие, как, 
например, промахи в кэш-памяти, что является 
хорошим индикатором для их раннего обнаруже-
ния. 
4.4. Атаки типа «отказ в 
 обслуживании» 

Некоторые атаки типа «отказ в обслужива-
нии» (Denial of Service, DoS) также могут быть 
обнаружены с помощью аппаратных счетчиков. 
Как и в п. 4.2 здесь следует использовать эталон-
ные профили выполнения программы, по-
скольку предполагается, что число, последова-
тельность возникновения и определенные соот-
ношения событий при нормальной работе при-
ложения сильно отличаются от работы во время 
DoS атаки, которая обычно характеризуется 
чрезвычайно высокой аппаратной активностью, 
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в частности должно серьезно возрасти число та-
ких событий, как промахи в TLB и запись в кэш-
память первого уровня [5]. 

5. Применение аппаратных 
счетчиков в обеспечении 
 информационной безопасности 

В качестве экспериментальной платформы 
был выбран процессор Intel Core I3-6100, под 
управлением ОС Fedora Core 22. Для имитации 
атаки использовался инструмент Mastik [6]. По-
скольку атаки по сторонним каналам с использо-
ванием кэш-памяти предполагают увеличение 
числа промахов по кэш-памяти 3-го уровня (L3), 
то вполне логично использовать это событие 
(L3_MISS) в качестве индикатора потенциаль-
ной угрозы. Однако одного его недостаточно. 
Сама логика приложения может предполагать 
большое число событий L3_MISS, например, 
при работе с большим числом данных, не храня-
щихся локально. Поэтому было предложено еще 
одно событие (L1_REPL), показывающее, как 
часто замещаются строки в кэш-памяти 1-го 
уровня. Теперь если взять их отношение 
L3_MISS / L1_REPL, то полученный индикатор 
будет означать, что приложение значительно ис-
пользует память, но при этом часто очищает 
кэш. Что может свидетельствовать о проводимой 
атаке. 

Последующие эксперименты показали, что 
за время измерения атакуемые приложения 
имели в несколько раз более высокое значение 
предложенного индикатора (в среднем, в 5 раз), 
по сравнению с его же значением в обычном ре-
жиме работы. 

Также были построены профили типичного 
выполнения вычислительных задач. В качестве 
критерия было предложено использовать отно-
шение числа выполненных команд сопроцессора 
плавающей арифметики к числу всех выполнен-
ных команд (профиль строился для каждого кри-
тического потока управления). Замеры проводи-

лись в определенных заранее контрольных точ-
ках. Эксперименты показали, что разброс в зна-
чениях критерия при разных запусках не превы-
сил 3%. Такой подход позволяет устранить про-
блему недетерминизма аппаратных счетчиков 
[7]. В профиль были включены и события по вы-
полнению перехода и выполнению инструкции 
ветвления. Учитывая недерминизм аппаратных 
счетчиков, сравнение профилей выполнения за-
дачи в эксплуатационном режиме с построен-
ными в ходе настройки эталонными профилями 
проводилось по контрольным событиям пере-
хода и ветвления (были выделены контрольные 
последовательности событий, нарушение кото-
рых является признаком потенциального сбоя 
или атаки). Стресс-тестирование показало, что 
предложенный подход позволил успешно выяв-
лять некорректные последовательности собы-
тий. 

6. Заключение 
Был проведен анализ потенциальных угроз, 

реализован прикладной программный интер-
фейс доступа к аппаратным счетчикам произво-
дительности, проведены исследования, подтвер-
ждающие изначальное предположение о том, 
что профиль выполнения атакуемой системы, 
построенный на определенных аппаратных со-
бытиях, меняется, что позволяет построить эф-
фективную систему мониторинга и защиты. 

В качестве направления дальнейших иссле-
дований видится расширение списка индикато-
ров, позволяющих выявлять проникновение в 
систему программ-злоумышленников, путем 
анализа изменения количества аппаратных со-
бытий в их различных комбинациях, во время 
имитации атак по сторонним каналам. 

«Публикация выполнена в рамках государ-
ственного задания по проведению фундамен-
тальных исследований по теме «Исследование и 
реализация программной платформы для пер-
спективных многоядерных процессоров» 
(FNEF-2022-002).»
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Abstract. The article discusses the possibility of using hardware performance counters, commonly used in the 
creating of system execution profiles, to identify potential security threats to critically important systems and com-
plexes. The authors have ported an open Performance Application Programming Interface (PAPI), which is used to 
manage hardware counters. 
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