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1. Введение 
Архитектура безопасности большого числа 

современных систем передачи и хранения ин-
формации строится на трех главных видах крип-
тографических операций: 

- криптографическое хэширование данных 
(свертка данных); 

- шифрование данных; 
- формирование цифровой подписи. 
За последние несколько десятилетий было 

разработано обширное множество различных 
подходов к реализации этих операций, каждый 
со своими собственными особенностями, отра-
жающими веяния современных тенденций в 
криптографии и покрывающими все новые и но-
вые обнаруживаемые уязвимости. Подобное 
многообразие особенностей и подходов на ран-
них этапах ознакомления с предметной обла-
стью существенно повышает порог входа для но-
вичков, целью которых является внедрение си-
стем безопасности в собственные программные 
продукты и системы. 

Задачей настоящей работы является ознаком-
ление с фундаментальными идеями, лежащими 
в основе алгоритмов выполнения криптографи-
ческих операций, и областью применения каж-
дой из этих операций. Изложение преимуще-
ственно фокусируется на примерах классиче-
ских алгоритмов, чтобы сформировать у чита-
теля общее представление об их различиях и 
предоставить ему возможность самостоятельно 
определиться с направлением дальнейшего изу-
чения.  

Раздел 2 посвящен описанию области приме-
нения операции криптографического хэширова-
ния данных. В частности, рассмотрено примене-
ние алгоритмов в задаче хранения аутентифика-
ционных данных (паролей). Сформулированы 
основные требования к алгоритмам криптогра-
фического хэширования, обеспечивающие им 

свойство криптографической стойкости, т.е. спо-
собности алгоритма противостоять атакам на ос-
нове методов криптографического анализа. 
Стойким в данном контексте считается, алго-
ритм, атака на который требует настолько значи-
тельных (или вовсе недостижимых) ресурсов 
атакующего, что затраты на них значительно 
превосходят ценность защищаемых данных. 
Приведены примеры зарубежных алгоритмов 
бесключевого хэширования, включающие в себя 
семейства алгоритмов MD [1], SHA [2], [3] и оте-
чественного алгоритма Стрибог [4], [5]. 

В разделе 3 рассмотрены алгоритмы шифро-
вания и их использование для обеспечения кон-
фиденциальности данных при их передаче 
(например, по протоколу HTTP с поддержкой 
Transport Layer Security (TLS) [6]). Описаны ос-
новные идеи семейств алгоритмов симметрич-
ного шифрования на основе общего секретного 
ключа и алгоритмов асимметричного шифрова-
ния на основе пары из публичного ключа для 
шифрования данных и секретного ключа для их 
расшифровки. На примерах алгоритмов симмет-
ричного шифрования также продемонстриро-
ваны различия между шифрованием данных 
блоками и поточным шифрованием, описаны до-
стоинства и недостатки этих подходов. 

В разделе 4 приведено описание операции 
формирования цифровой подписи и ее примене-
ние для обеспечения гарантий целостности пе-
редаваемых данных. Рассмотрены особенности 
протоколов использования цифровых подписей 
для проверки подлинности получаемых по сети 
публичных ключей при установлении зашифро-
ванного соединения с сервером посредством 
асимметричного алгоритма шифрования. 

В разделе 5 рассматриваются примеры гото-
вых программных реализаций всех трех видов 
операций в составе библиотек и утилит. При-
меры включают в себя как зарубежные про-
граммные продукты (такие как OpenSSL [7], 
NaCl [8] или утилиту Crypt4GH, реализующую 
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стандарт GA4GH [9]), так и отечественные сред-
ства криптографической защиты (например, 
криптопровайдер КриптоПро CSP [10]). 

2. Криптографическое  
хэширование данных 

Под хэшированием в широком смысле подра-
зумевается любой односторонний процесс пре-
образования входных данных в выходные по не-
которому заданному алгоритму. Дополнитель-
ные требования к алгоритму зависят от области 
его применения. В криптографии операция хэ-
ширования обычно применяется для обеспече-
ния целостности передаваемых данных, а также 
для повышения безопасности при хранении 
аутентификационных данных. Для этого алго-
ритму хэширования требуется обладать допол-
нительным свойством — свойством криптогра-
фической стойкости, которое на практике дости-
гается за счет выполнения следующих основных 
требований: 

- при применении алгоритма к одним и тем 
же входным значениям всегда должны полу-
чаться одни и те же выходные значения (не обя-
зательно уникальные); 

- восстановление возможного прообраза по 
полученным выходным значениям должно 
иметь крайне высокую трудоемкость и требо-
вать очень большого времени; 

- малейшее изменение входных значений 
должно приводить к существенному и трудно 
предсказуемому изменению получаемых в ре-
зультате выходных значений; 

- алгоритм должен минимизировать вероят-
ность возникновения коллизий, когда для двух 
различных входных значений в результате полу-
чаются совпадающие выходные значения; 

- выходные данные не должны нести в себе 
какого-либо дополнительного смысла, кроме 
того, что получение двух различных выходных 
значений свидетельствует о несовпадении ис-
ходных входных значений. 

Рассмотрим использование операций хэши-
рования для обеспечения безопасного хранения 
аутентификационных данных. Общепринятым 
способом аутентификации пользователя явля-
ется использование паролей. В современных ин-
формационных системах хранение паролей 
учетных записей пользователей в открытом виде 
считается нежелательной практикой, т.к. в слу-
чае утечки базы данных злоумышленнику не по-
требуется прикладывать дополнительные уси-
лия для получения доступа к системе. Крипто-
графическое хэширование призвано усложнить 
злоумышленнику задачу подбора пароля и со-
здать дополнительный запас времени, за кото-
рый можно было бы успеть обнаружить утечку и 

изменить пароль до того, как он станет известен 
злоумышленнику и будет нанесен ущерб си-
стеме или пользователю. 

Для этой цели значения паролей в базе дан-
ных информационной системы заменяются зна-
чениями их криптографических хэшей. При 
этом по-прежнему возможно достаточно 
надежно аутентифицировать пользователя при 
входе в систему по значению его пароля: нужно 
вычислить хэш пароля, а затем сравнить полу-
ченный хэш со значением хэша указанного поль-
зователя в базе. Вместе с этим подобная замена 
значительно понижает риск мгновенной компро-
метации учетных записей пользователей в слу-
чае утечки базы, т.к. для подбора исходного па-
роля злоумышленнику необходимо решить за-
дачу восстановления прообраза хэша, что сде-
лать достаточно трудно.  

На практике только этих мер для обеспечения 
безопасности оказывается недостаточно. Хотя 
хэширование само по себе является эффектив-
ным средством для сокрытия значения исход-
ного пароля пользователя, оно не учитывает вли-
яние человеческого фактора. Часто пользователи 
используют в качестве пароля типовые легко за-
поминающиеся комбинации символов. Если зло-
умышленнику известен используемый в системе 
алгоритм криптографического хэширования, он 
может составить список из наиболее часто 
встречающихся паролей, заблаговременно вы-
числить значения всех их хэшей и упорядочить 
полученную таблицу хэшей для быстрого по-
иска по ней. Тогда, если произойдет утечка базы, 
ему будет достаточно сопоставить аутентифика-
ционные данные системы с имеющимся у него 
упорядоченным перечнем хэшей, чтобы в крат-
чайшие сроки выявить возможные учетные за-
писи со слабыми паролями и получить доступ к 
системе. Хотя ответственность за использование 
сложного пароля прежде всего лежит на самом 
пользователе, тем не менее в качестве дополни-
тельной меры противодействия данной угрозе 
был предложен метод автоматического усложне-
ния пользовательских паролей, позволяющий 
еще больше замедлить злоумышленника. Так по-
явилось понятие «соли» (salt) — последователь-
ности символов, добавляемой к паролю при каж-
дом вычислении хэша. Соль случайным образом 
формируется в момент регистрации пользова-
теля в системе. Сформированные значения со-
храняются в базе данных системы в открытом 
виде, но держатся в секрете от любых внешних 
участников информационного обмена. Един-
ственная задача соли состоит в том, чтобы за 
счет ее добавления (конкатенации) усилить па-
роль и превратить его в более длинную и нечи-
таемую строку, которой не окажется в заранее 
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подготовленном и оптимизированном для быст-
рого поиска перечне злоумышленника. При этом 
следует понимать, что утечка значений соли вме-
сте с другими аутентификационными данными 
по-прежнему ставит под угрозу безопасность си-
стемы. Отличие только в том, что злоумышлен-
нику понадобится больше времени на взлом, т.к. 
ему будет необходимо повторно перебрать все 
типовые пароли и вычислить их хэши с учетом 
ставшей известной ему соли.  

 Классическими примерами семейств (бес-
ключевых) криптографических хэш-функций 
являются семейства MD-функций (MD2, MD4, 
MD5 [1] и MD6), а также семейство функций 
SHA (Secure Hash Algorithm). Часть из указан-
ных хэш-функций за прошедшее с момента 
изобретения время уже утратили свойства крип-
тографической стойкости, тогда как оставшиеся 
функции до сих пор активно применяются на 
практике. К последним можно отнести разно-
видности SHA-2 [2] для различных длин хэшей, 
а также относительно новый алгоритм SHA-3 
(Keccak) [3]. Отечественным вариантом крипто-
графического хэширования выступает алгоритм 
«Стрибог», описанный в межгосударственном 
криптографическом стандарте ГОСТ 34.11-2018 
[4], разработанном на основе национального 
стандарта Российской Федерации ГОСТ Р 
34.11.2012 [5]. 

3. Шифрование данных 
Другой важной с точки зрения безопасности 

операцией является шифрование. Ее основное 
назначение — соблюдение условия конфиденци-
альности при передаче информации от отправи-
теля к получателю.  Требуется, чтобы никакой 
сторонний субъект, которому удастся перехва-
тить сообщение, не был способен прочесть 
скрытую в сообщении информацию. Для дости-
жения поставленной цели также используется 
алгоритм преобразования исходных данных, но 
— в отличие от алгоритма криптографического 
хэширования — задача восстановления прооб-
раза зашифрованных данных получателем 
должна быть однозначно разрешима. Конфиден-
циальность же обеспечивается тем условием, 
что для расшифровки данных алгоритму необхо-
дим дополнительный аргумент — персональный 
ключ шифрования, который получатель должен 
хранить в тайне от других участников информа-
ционного обмена и для которого алгоритм шиф-
рования должен гарантировать недопустимо вы-
сокую трудоемкость его подбора по структуре 
зашифрованных данных. Отправителю для шиф-
рования данных также необходим парный к 
ключу получателя ключ, который в зависимости 

от используемого алгоритма может быть как сек-
ретным, так и публично доступным. Принято 
выделять два основных семейства криптографи-
ческих алгоритмов шифрования: 

- алгоритмы на основе секретного симмет-
ричного ключа, используемого одновременно 
для шифрования и расшифровки данных; 

- алгоритмы асимметричного шифрования с 
отдельным публичным ключом для шифрования 
данных и отдельным секретным ключом для рас-
шифровки данных. 

Простейшим примером алгоритма симмет-
ричного шифрования является предложенный в 
1917 году шифр Вернама, предназначавшийся 
для защищенной передачи телеграфных сообще-
ний. Алгоритм состоит всего лишь из одного 
действия — применения логической операции 
XOR. Аргументами операции выступают исход-
ное шифруемое сообщение и секретный ключ, 
длина которого должна совпадать с длиной сооб-
щения. Для расшифровки данных принимающей 
стороне также достаточно всего лишь приме-
нить операцию XOR при условии, что ей изве-
стен секретный ключ. Данный алгоритм, как 
было показано Шенноном, обладает абсолютной 
криптографической стойкостью. Однако для его 
применения на практике необходимо, чтобы в 
каждой операции всегда был задействован но-
вый случайно генерируемый ключ, длина кото-
рого бы совпадала и длиной шифруемых дан-
ных. В противном случае алгоритм становится 
уязвим к методам статистического анализа, т.к. 
XOR между двумя зашифрованными одним и 
тем же ключом сообщениями позволяет исклю-
чить из рассмотрения значение ключа и опреде-
лить позиции совпадающих и несовпадающих 
битов исходных сообщений. Если шифр исполь-
зуется для передачи текстовых данных, поиск 
совпадений длиной в один или несколько байтов 
позволит определить позиции совпадающих 
символов, на место которых можно попытаться 
подставить наиболее распространенные сим-
волы используемого алфавита.  Также злоумыш-
ленник получит возможность отслеживать от-
правку повторяющихся сообщений, а взлом 
шифра хотя бы одного из сообщений сразу же 
позволит расшифровать все оставшиеся сообще-
ния. 

Практическая реализация формирования и 
безопасной передачи очень длинных и при этом 
абсолютно случайных ключей весьма затратна.  
По этой причине в чистом виде шифр Вернама 
практически не используется. Вместо этого ал-
горитмы шифрования обычно прибегают к псев-
дослучайному формированию шифрующей по-
следовательности. Упрощенно это выглядит сле-
дующим образом: 

- выбирается секретный симметричный ключ 
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шифрования фиксированной длины; 
- задается функция криптографического хэ-

ширования, для которой секретный ключ должен 
являться дополнительным параметром; 

- задается последовательность целых неотри-
цательных чисел nonce, nonce+1, nonce+2, … 
Точка отсчета nonce выбирается таким образом, 
чтобы среди элементов последовательности не 
встречались уже ранее использовавшиеся в дру-
гих операциях шифрования элементы. Как аль-
тернатива также встречается использование 
фиксированной последовательности 0, 1, 2, 3… 
с использованием nonce в роли одноразового до-
полнительного параметра для инициализации 
начального состояния функции хэширования 
наравне с секретным ключом; 

-  используя секретный симметричный ключ, 
путем вычисления хэшей от nonce+i формиру-
ется шифрующая последовательность; 

- преобразование исходных данных в шифр 
осуществляется через XOR с шифрующей по-
следовательностью; 

- принимающей стороне зашифрованные 
данные передаются вместе со значением nonce, с 
помощью которого она должна восстановить 
шифрующую последовательность из собствен-
ного значения секретного ключа. 

Описанную выше процедуру принято назы-
вать поточным шифрованием, т.к. она позволяет 
шифровать исходные данные произвольной 
длины побитово и свободно перемещаться 
между участками данных при шифровании и 
расшифровке. Примерами используемых на 
практике алгоритмов поточного симметричного 
шифрования являются Salsa20 [11], XSalsa20 
(расширенный вариант Salsa20 с увеличением 
размера nonce с 64 до 192 бит), а также 
ChaCha20 [12]. 

Альтернативой алгоритмам поточного шиф-
рования выступают алгоритмы блочного шифро-
вания. В них входные данные передаются функ-
ции шифрования порциями в виде отдельных 
блоков фиксированной длины. Широко извест-
ными примерами алгоритмов блочного шифро-
вания являются ныне устаревший алгоритм DES 
(Data Encryption Standard) с длиной ключа 56 бит 
и пришедший ему на смену AES (Advanced 
Encryption Standard) с поддерживаемыми дли-
нами ключей 128/192/256 бит [13]. В частности, 
AES использует блоки размера 128 бит, из кото-
рых функция шифрования сначала формирует 
квадрат 4x4 байта для того, чтобы далее выпол-
нять на нем различные операции перестановки.  

Случаи, когда длина передаваемого сообще-
ния точно совпадает с длиной одного блока, на 
практике встречаются достаточно редко. Гораздо 
чаще пересылаемые данные имеют произволь-

ную длину, значительно превышающую раз-
меры блока. Простейшим решением в таких слу-
чаях было бы дополнение исходного сообщения 
служебными битами до длины, кратной длине 
блока, а затем последовательное применение 
функции шифрования к каждому блоку сообще-
ния. Такой режим использования алгоритма 
шифрования AES получил название Electronic 
Codebook (ECB). В реальных системах AES-
ECB почти не встречается из-за заложенного в 
него недостатка — низкой эффективности при 
работе с данными, имеющими периодическую 
структуру и содержащими большое количество 
повторяющихся блоков. Проблемой является то, 
что для одинаковых входных блоков функция 
шифрования сформирует одинаковый шифр. 
Этим она частично раскроет для сторонних 
наблюдателей структуру исходных данных. Осо-
бенно наглядно эту проблему демонстрируют 
примеры использования AES-ECB для зашифро-
ванной передачи изображений, где через шифр 
могут визуально угадываться контуры исходного 
изображения. Для борьбы с данным недостатком 
блочных алгоритмов были разработаны иные ре-
жимы функционирования [14], наиболее извест-
ными из которых являются: 

- Cipher Block Changing (CBC) или режим 
сцепления блоков шифротекста; 

- Counter Mode (CTR) или режим счетчика; 
- Galois/Counter Mode (GCM). 
В случае CBC проблема повторяющихся бло-

ков решается добавлением к шифруемым дан-
ным «шумов». Алгоритм добавления в этом слу-
чае выглядит следующим образом: 

- перед началом работы случайным образом 
выбирается вектор инициализации (IV).  Вектор 
должен иметь длину одного блока и задает 
начальное значение для шума. Получателю IV 
передается в открытом виде; 

- блоки передаваемого сообщения шифру-
ются последовательно; 

- шаг алгоритма состоит из получения оче-
редного блока исходного текста, добавления к 
нему текущего значения шума с помощью опе-
рации XOR и передачи полученного результата 
на вход функции шифрования блока (AES); 

- после каждого шифрования полученный в 
результате зашифрованный блок устанавлива-
ется как новое текущее значение шума. 

Хотя данный режим эффективно решает про-
блему шифрования повторяющихся блоков, у 
него есть собственные недостатки. Среди них 
невозможность распараллеливания операции 
шифрования (хотя при этом присутствует воз-
можность параллельной расшифровки данных), 
а также наличие угроз вида Padding Oracle 
Attack [15]. Последнюю рассмотрим более по-
дробно. 
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Для реализации атаки Padding Oracle Attack 
достаточно следующих условий: 

- злоумышленник способен перехватывать 
зашифрованные сообщения отправителя; 

- злоумышленнику известна используемая 
длина блока (для AES это 16 байт), поэтому он 
может разделить сообщение на отдельные блоки 
и расшифровывать их по отдельности друг от 
друга; 

- злоумышленнику известен используемый 
при шифровании формат дополнения сообщения 
служебными байтами до длины, кратной длине 
блока. Как правило, используется формат, когда 
к последнему блоку длины 15 байт добавляется 
один байт со значением 1, для блока длины 
14 байт — два байта со значением 2, для блока 
длины 13 байт — три байта со значением 3 и т.д. 
Если длина сообщения кратна 16, используется 
добавочный блок длины 16, у которого все байты 
имеют значение 16. Ясно, что в этом случае со-
общение, последний блок которого оканчива-
ется, например, двумя байтами со значениями 3 
и 2, не будет являться корректным; 

- злоумышленник может неограниченное от-
правлять серверу поддельные сообщения; и 

- злоумышленник каким-то образом (напри-
мер, по разнице во времени отклика сервера на 
его запросы) способен определить, посчитал ли 
сервер его сообщение некорректным из-за не-
правильной последовательности добавочных 
байтов или нет. 

Взлом шифра в этом случае производится 
поблочно. Блоки взламываются побайтово. В 
каждом блоке байты взламываются в порядке от 
конца к началу. Взлом каждого байта выполня-
ется методом перебора. Для взлома последнего 
байта злоумышленник формирует сообщения, 
состоящие ровно из двух блоков: 

- вторым блоком сообщения является взла-
мываемый блок; 

- в первом блоке первые 15 байт задаются 
случайным образом; 

- значения последнего байта перебираются в 
порядке от 0 до 255, до тех пор, пока не обнару-
жится, что для какого-то из значений сервер по-
считал сообщение корректным. 

Корректность сообщения означает, что по ре-
зультатам применения операции расшифровки 
второго блока по алгоритму AES (или другому 
блочному алгоритму шифрования) и вычисления 
XOR между ним и значением первого блока хво-
стовые байты полученного в результате блока 
образуют последовательность, которую сервер 
интерпретирует как правильную последователь-
ность добавочных байтов. Таковой гарантиро-
ванно является последовательность из одного 
последнего байта со значением 1. Для некоторых 

блоков дополнительно возможны последова-
тельности 2-2, 3-3-3 и т.д., отфильтровать кото-
рые можно путем модификации первых 15 бай-
тов первого блока поддельного сообщения. 

Информации о том, что последний байт по-
сле применения процедуры расшифровки в со-
ответствии с режимом CBC для поддельного со-
общения имеет значение 1 достаточно для его 
взлома в исходном сообщении. Для этого нужно 
последовательно сделать две операции XOR сна-
чала между единичным байтом и последним по-
добранным байтом первого блока в подставном 
сообщении злоумышленника, а затем между по-
лучившимся результатом и последним байтом 
предыдущего блока в исходном сообщении от-
правителя. 

Далее, используя уже полученное поддель-
ное сообщение, необходимо применить анало-
гичную процедуру подбора предпоследнего 
байта в первом блоке с целью получить после 
применения алгоритма расшифровки CBC хво-
стовую последовательность вида 2-2, затем по-
следовательность 3-3-3 для взлома третьего 
байта с конца и т.д. Таким образом расшифровы-
вается каждый байт в блоке. 

Пример с Padding Oracle Attack наглядно де-
монстрирует, что достаточно малейшего несо-
вершенства реализации алгоритма (например, 
диагностируемого несовпадения во времени об-
работки отдельных ветвей алгоритма), чтобы 
сделать систему полностью уязвимой 

Режим CTR фактически превращает работу с 
блоками в алгоритм поточного шифрования, где 
функция шифрования блока используется как 
функция хэширования: 

- перед началом работы выбирается однора-
зовый целочисленный параметр nonce, на основе 
которого строится последовательность nonce, 
nonce+1, nonce+2, … по числу блоков исходного 
сообщения; 

- к каждому элементу последовательности 
nonce+i применяется функция шифрования для 
получения очередного блока шифрующей после-
довательности; 

- блоки шифра получаются путем суммиро-
вания (XOR) блоков исходного текста передава-
емого сообщения с полученными блоками шиф-
рующей последовательности; 

- получателю вместе с зашифрованными дан-
ными в открытом виде передается значение 
nonce, чтобы он при помощи собственной копии 
симметричного ключа имел возможность вос-
произвести значения шифрующей последова-
тельности и расшифровать сообщения. 

Данный режим обладает всеми достоин-
ствами и недостатками алгоритмов поточного 
шифрования. К ограничениям следует отнести 
недопустимость повторного использования 
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nonce для шифрования нескольких блоков дан-
ных, т.к. это автоматически позволяет выявить 
позиции совпадающих и несовпадающих битов 
зашифрованных сообщений любому, кто пере-
хватит шифр. Поэтому в режиме CTR каждый 
ключ шифрования может быть использован 
лишь ограниченное число раз и, если nonce вы-
бирается в режиме счетчика, должен быть заме-
нен при переполнении счетчика. 

Режим GCM (Galois/Counter Mode) можно 
считать улучшенной версией режима CTR, до-
бавляющей возможность проверки целостности 
и аутентификации передаваемых данных. Т.к. 
GCM основан на CTR, его также можно отнести 
к семейству алгоритмов поточного шифрования. 
Среди всех перечисленных режимов GCM явля-
ется в настоящий момент наиболее используе-
мым. Его распространению поспособствовало 
обнаружение в CBC вышеупомянутых уязвимо-
стей, из-за чего в конечном итоге CBC был ис-
ключен из спецификации Transport Layer Secu-
rity (TLS) в версии 1.3. Результатом этого стало 
то, что все присутствующие на сегодняшний 
день в спецификации TLS 1.3 шифры являются 
поточными [6]. 

Вторым важным семейством алгоритмов 
шифрования являются алгоритмы асимметрич-
ного шифрования, также известные как алго-
ритмы шифрования на основе открытого ключа. 
Их идея заключается в наличии пары ключей, 
один из которых является общедоступным и ис-
пользуется для шифрования данных, а второй 
держится в секрете и используется для расшиф-
ровки сообщений. Известнейшим примером ал-
горитма асимметричного шифрования является 
алгоритм RSA (аббревиатура от фамилий Rivest, 
Shamir и Adleman), основанный на высокой вы-
числительной сложности задачи разложения на 
множители больших полупростых чисел. Проце-
дура формирования RSA-ключей выглядит сле-
дующим образом: 

- случайно выбираются два простых числа p 
и q (длины 1024 бит и более); 

- вычисляется модуль 𝑛𝑛 = 𝑝𝑝𝑝𝑝; 
- вычисляется функция Эйлера модуля 

𝜑𝜑(𝑛𝑛) = (𝑝𝑝 − 1)(𝑞𝑞 − 1); 
- выбирается публичный показатель степени 

e как любое число, взаимно простое с 𝜑𝜑(𝑛𝑛). Ре-
комендуется использовать простые числа с не-
большим количеством единичных битов в дво-
ичной записи для ускорения операций возведе-
ния в степень. Например, 65537; 

- из условия 𝑒𝑒𝑒𝑒 ≡ 1(𝑚𝑚𝑚𝑚𝑚𝑚 𝜑𝜑(𝑛𝑛)) вычисляется 
секретный показатель степени d. Ее существова-
ние обеспечивается выполнением предыдущего 
условия. Для нахождения может использоваться 
расширенный алгоритм Евклида; 

- пара (e, n) назначается публичным ключом; 

- пара (d, n) назначается секретным ключом. 
Тогда операции шифрования и расшифровки 

для произвольного числа 0 ≤ 𝑚𝑚 < 𝑛𝑛 задаются 
следующими симметричными друг другу фор-
мулами: 

𝑐𝑐 = 𝐸𝐸𝐸𝐸𝐸𝐸(𝑚𝑚) = 𝑚𝑚𝑒𝑒 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛) 
𝑚𝑚 = 𝐷𝐷𝐷𝐷𝐷𝐷(𝑐𝑐) = 𝑐𝑐𝑑𝑑  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛) 

Обоснование их работоспособности приведено 
в Приложении к статье. Криптографическая 
стойкость шифра обеспечивается трудностью 
вычисления множителей p и q по значению n, а 
следовательно, и трудностью подбора секрет-
ного показателя степени d. 

Недостатки RSA схожи с недостатками алго-
ритмов блочного шифрования — шифр для по-
вторяющихся исходных данных будет одинаков. 
По этой причине на практике обычно использу-
ется комбинированный подход, когда RSA ис-
пользуется на начальном этапе для защищенной 
передачи симметричного случайно формируе-
мого сеансового ключа, с помощью которого уже 
осуществляется непосредственное шифрование 
данных. 

Важным достоинством RSA в сравнении с ал-
горитмами симметричного шифрования явля-
ется то, что отправителю данных не требуется 
заранее иметь собственную копию секретного 
ключа для обмена данными с получателем. По-
лучателю достаточно прислать свой публичный 
ключ по любому открытому каналу данных. То-
гда с его помощью отправитель сможет зашиф-
ровать данные для получателя и тем самым обес-
печить их конфиденциальность. Однако при 
этом возникает дополнительная угроза, связан-
ная невозможностью установления реального 
владельца секретного ключа, от которого был 
получен публичный ключ. Главной опасностью 
в этом сценарии являются атаки вида «человек 
посередине» (Man in the Middle; MITM), в кото-
рых злоумышленник: 

- формирует собственную пару из публич-
ного и секретного RSA-ключей; 

- встраивается в канал между отправителем и 
получателем данных; 

- перехватывает публичный ключ, которым 
должны шифроваться данные для получателя, 
при его передаче отправителю;  

- подменяет перехваченный ключ своим соб-
ственным экземпляром публичного ключа, для 
которого ему известен секретный ключ. 

В таком случае злоумышленник получает 
возможность расшифровки всех сообщений от-
правителя, т.к. они шифруются публичным клю-
чом злоумышленника. При этом для отправителя 
этот факт может остаться незамеченным, т.к. 
злоумышленник способен самостоятельно пере-
шифровать скомпрометированные данные пере-
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хваченным публичным ключом исходного полу-
чателя и переслать их дальше. Для борьбы с 
этим недостатком был разработан метод защиты, 
основанный на использовании электронно-циф-
ровой подписи (ЭЦП, далее — цифровая под-
пись), которая должна принадлежать третьей до-
веренной стороне. 

4. Цифровая подпись 
Цифровая подпись — это третий вид низко-

уровневых криптографических операций, 
направленный прежде всего на обеспечение за-
щиты целостности передаваемых данных. Выше 
при описании алгоритма асимметричного шиф-
рования RSA подчеркивалось, что операции 
шифрования и расшифровки имеют идентичный 
друг другу вид, из которого следует, что публич-
ный ключ RSA может быть использован не 
только для шифрования данных, но также с его 
помощью можно выполнять обратную операцию 
— расшифровку данных, зашифрованных при 
помощи секретного ключа. Если передаваемые в 
открытом виде исходные данные необходимо за-
щитить от искажения или подмены при пере-
даче, можно сделать это следующим образом: 

- к передаваемому в открытом виде сообще-
нию прикрепляется дополнительное поле, со-
держащее хэш-сумму передаваемых данных; 

- хэш-сумма дополнительно шифруется сек-
ретным ключом владельца данных. 

В этом случае любой обладатель публичного 
ключа при получении данных может самостоя-
тельно вычислить хэш-сумму полученного сооб-
щения, а затем сравнить ее с хэш-суммой, полу-
чаемой в результате расшифровки переданного 
вместе с сообщением дополнительного поля 
шифротекста. Совпадение значений будет свиде-
тельствовать о том, что сообщение было полу-
чено от обладателя секретного ключа и достав-
лено получателю в неизменном виде. 

Однако в случае атаки MITM (Man in the 
Middle) исходными данными являются сами 
публичные ключи сервисов сети Интернет, по-
этому применить описанный выше алгоритм 
проверки подписи не представляется возмож-
ным и для решения задачи необходимо привле-
чение третьей стороны. В качестве одного из та-
ких решений было предложено помещать пуб-
личные ключи каждого сервиса внутрь специа-
лизированного документа — сертификата, до-
полнительно хранящего информацию о вла-
дельце сервиса. При этом право выпуска серти-
фикатов для регистрируемых в сети сервисов 
предоставляется только ограниченному кругу 
доверенных организаций — удостоверяющих 
центров (Certification authority, CA). Для защиты 
от подделки каждый сертификат заверяется 

электронной подписью удостоверяющего центра 
(или подписью нижестоящей в цепочке сертифи-
кации организации, сертификат которой заверен 
подписью удостоверяющего центра). При этом 
используется описанный выше алгоритм. Пуб-
личные ключи корневых удостоверяющих цен-
тров, необходимые для проверки подлинности 
сертификата, общедоступны и, как правило, из-
начально зашиты в дистрибутивы программ 
(браузеров), с помощью которых осуществля-
ется доступ к информационным системам в сети 
Интернет. Таким образом, предустановленные 
публичные ключи удостоверяющих центров поз-
воляют пользователям программ в автономном 
режиме проверять целостность публичных клю-
чей внутри получаемых от сервисов сертифика-
тов путем проверки их подписей, которые также 
должны принадлежать удостоверяющим цен-
трам. Тем самым обеспечивается доверие к от-
правителю сертификата и исключается возмож-
ность подмены публичного ключа на этапе уста-
новления защищенного соединения.  Подробно 
структуру сертификата описывает формат 
X.509 [16].  

Детальное описание всех процедур, связан-
ных с использованием алгоритмов асимметрич-
ного шифрования, можно найти в серии специ-
фикаций Public-Key Cryptography Standards 
(PKCS), созданных корпорацией RSA. Среди 
них: 

- PKCS #1 — описание алгоритма RSA и фор-
мата его ключей (RFC 8017 [17]); 

- PKCS #3 — описание алгоритма Диффи-
Хеллмана выработки общего секретного 
ключа [18]; 

- PKCS #7 — описание формата зашифрован-
ного и/или подписанного криптографического 
сообщения (обычно представлен файлом с рас-
ширением .p7b) [19]; 

- PKCS #8 — описание формата секретного 
ключа (RFC 5958 [20]; обычно представлен фай-
лом с расширением .key); 

- PKCS #12 — описание формата экспорта 
секретного ключа вместе с сертификатом и пу-
тём сертификации (RFC 7292 [21]; обычно пред-
ставлен файлом с расширением .pfx или .p12). 

5. Программные реализации 
Следует отметить, что даже при наличии го-

товых криптографических алгоритмов их прак-
тическая реализация остается весьма нетриви-
альной задачей. Как было отмечено в примере с 
Padding Oracle Attack, для взлома шифра может 
быть достаточно малейшего неучтенного канала 
данных. Даже несовпадения времени выполне-
ния операции расшифровки блоков с коррект-
ным и некорректным дополнением служебными 
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хвостовыми байтами оказывается достаточно 
для проведения тайминговых атак и взлома ал-
горитма. По этой причине собственная разра-
ботка криптографических примитивов при от-
сутствии должного уровня квалификации часто 
нежелательна, а при использовании готовых ре-
шений следует тщательно подходить к выбору и 
полагаться только на проверенные реализации 
алгоритмов, предоставляемые сторонними биб-
лиотеками и программными продуктами.  

Одним из важнейших примеров готовой реа-
лизации является библиотека OpenSSL [7], кото-
рая является библиотекой с открытым исходным 
кодом и известна прежде всего тем, что содер-
жит в себе открытую реализацию протокола 
TLS. Помимо этого, библиотека поддерживает 
множество алгоритмов шифрования и крипто-
графического хэширования, включая алгоритмы 
AES, ChaCha20, RSA и алгоритмы MD5, SHA-2, 
SHA-3, а также многие другие. 

Другим известным примером является биб-
лиотека Networking and Cryptography Library 
(NaCl) [8], созданная Дэниэлом Бернштейном — 
автором многих известных криптографических 
алгоритмов. Ядром библиотеки NaCl выступают 
три основных элемента: 

- эллиптическая кривая Curve25519, посред-
ством которой реализуется разновидность про-
токола Диффи-Хеллмана выработки общего 
симметричного ключа (ECDH); 

- потоковое шифрование на основе алго-
ритма Salsa20; 

- функция Poly1305, используемая для аутен-
тификации сообщений.  

При создании библиотеки авторы ставили 
своей основной целью обеспечение высокой 
производительности при сохранении неболь-
шого размера библиотеки. Также особое внима-
ние уделено борьбе с тайминговыми атаками по 
типу описанной Padding Oracle Attack. Для их 
предотвращения при реализации библиотеки 
выбирались операции с фиксированным време-
нем выполнения, не зависящим от подаваемых 
на вход алгоритмам данных. 

Среди отечественных криптопровайдеров 
следует отметить КриптоПро CSP [10], выступа-
ющего в роли хранилища ключей и реализую-
щего работу с ними через различные криптогра-
фические алгоритмы — хэширование, шифрова-
ние и формирование электронных подписей. До-
стоинством КриптоПро CSP является поддержка 
как зарубежных, так и отечественные криптогра-
фических алгоритмов, а также совместимость с 
большинством известных разновидностей клю-
чевых носителей. В частности, поддерживаются 
отечественные алгоритмы криптографического 
хэширования ГОСТ Р 34.11-2012 (алгоритм 
«Стрибог»), блочного шифрования ГОСТ Р 

34.12-2015 (алгоритмы «Кузнечик» и «Магма») 
[22] и формирования цифровой подписи ГОСТ Р 
34.10-2012 [23].  

Другим направлением развития средств 
криптографии является разработка специализи-
рованных библиотек и утилит, направленных на 
расширение условий применения базовых крип-
тографических операций. Например, во всех в 
рассмотренных выше подходах к шифрованию 
неявно предполагалось, что доступ к данным в 
расшифрованном виде имеют только два участ-
ника информационного обмена — владелец дан-
ных, выступающий в роли отправителя, а также 
их получатель, обладающий копией секретного 
ключа шифрования. При этом шифрование в 
описанных подходах было прежде всего необхо-
димо для безопасной передачи данных от отпра-
вителя к получателю, а вопрос хранения данных 
отдельно не рассматривался. Часто, когда исход-
ные данные обладают высоким уровнем конфи-
денциальности, их хранение в открытом виде 
оказывается нежелательным, поэтому для за-
щиты от утечки данных также применяют шиф-
рование. Если появляется необходимость предо-
ставить дополнительный доступ к зашифрован-
ным данным, существует несколько подходов к 
реализации этого требования: 

- расшифровать исходные данные, чтобы по-
вторно зашифровать их ключом получателя; 

- зашифровать ключом получателя ключ, поз-
воляющий расшифровать данные, и передать его 
вместе с зашифрованными данными (данный 
подход принято называть envelope encryption). 

Развитием второго подхода служит формат 
Global Alliance for Genomics and Health (GA4GH 
[9]), разработанный для безопасного хранения и 
передачи генетических данных пациентов и мас-
штабирующий предложенную концепцию на 
случай большего количества получателей дан-
ных. В GA4GH сообщения имеют блочную 
структуру и состоят из блоков заголовков (по ко-
личеству получателей данных) и блоков зашиф-
рованных данных. Упрощенно формат расшиф-
ровки сообщения в GA4GH выглядит следую-
щим образом: 

- отправитель и все получатели сообщения 
имеют собственную пару из публичного и сек-
ретного ключей схемы асимметричного шифро-
вания. Публичные ключи получателей предвари-
тельно передаются отправителю для шифрова-
ния; 

- получатель сообщения поочередно переби-
рает заголовки сообщения в поисках предназна-
чающегося ему заголовка. Каждый заголовок со-
держит в себе публичный ключ отправителя и 
блок зашифрованных данных. При обнаружении 
заголовка, данные которого получится расшиф-
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ровать, процедура перебора приостанавлива-
ется; 

- для расшифровки заголовка необходим сим-
метричный ключ. Для его вычисления использу-
ется алгоритм Диффи-Хеллмана выработки об-
щего секретного ключа. На вход алгоритму пере-
даются публичный ключ отправителя из заго-
ловка и секретный ключ получателя (для усиле-
ния безопасности в GA4GH значение общего 
ключа дополнительно хэшируется вместе со зна-
чениями публичных ключей по алгоритму 
Blake2b; см. [9], [24]); 

- целостность данных и правильность их рас-
шифровки контролируются с помощью Message 
Authentication Code (MAC) на основе функции 
функция Poly1305; 

- в случае успеха из заголовка извлекается 
ключ шифрования данных, с помощью которого 
расшифровываются блоки передаваемых дан-
ных сообщения. 

Следует отметить, что получатели данных 
имеют возможность не только расшифровать 
данные, но также добавить к сообщению новых 

получателей, для чего им достаточно знать пуб-
личный ключ нового получателя. В этом случае 
к сообщению добавляется новый блок заголовка, 
внутрь которого помещается публичный ключ 
того, кто этот заголовок добавляет. 

Одной из известных реализаций формата 
GA4GH является утилита Crypt4GH на языке 
программирования Python. 

6. Заключение 
В работе рассмотрены примеры популярных 

низкоуровневых криптографических операций. 
На этих примерах продемонстрированы основ-
ные идеи, благодаря которым обеспечивается 
выполнение требований безопасности. 

Публикация выполнена в рамках государ-
ственного задания по проведению фундамен-
тальных исследований по теме «Исследование и 
реализация программной платформы для пер-
спективных многоядерных процессоров» 
(FNEF-2022-002). 
 

Приложение 
Покажем корректность задания операций шифрования и расшифровки в алгоритме RSA с помо-

щью формул 
𝑐𝑐 = 𝐸𝐸𝐸𝐸𝐸𝐸(𝑚𝑚) = 𝑚𝑚𝑒𝑒 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛) 
𝑚𝑚 = 𝐷𝐷𝐷𝐷𝐷𝐷(𝑐𝑐) = 𝑐𝑐𝑑𝑑  (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛) 

Требуется доказать, что для любого 0 ≤ 𝑚𝑚 < 𝑛𝑛  выполнено следующее тождество: 
𝐷𝐷𝐷𝐷𝐷𝐷�𝐸𝐸𝐸𝐸𝐸𝐸(𝑚𝑚)� = 𝑚𝑚𝑒𝑒𝑒𝑒 ≡ 𝑚𝑚 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛) 

Доказательство этого утверждения опирается на использование нескольких вспомогательных тео-
рем. 

Теорема 1 (малая теорема Ферма).  Пусть p — простое число и a — натуральное число, кото-
рое не делится на p. Тогда 

𝑎𝑎𝑝𝑝−1 ≡ 1 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) 
 
Теорема 2 (китайская теорема об остатках). Пусть a1, a2, …, an — набор попарно взаимно про-

стых натуральных чисел. Пусть также r1, r2, …, rn — набор целых чисел таких, что 0 ≤ 𝑟𝑟𝑖𝑖 ≤ 𝑎𝑎𝑖𝑖 для 
всех 𝑖𝑖 ∈ {1, 2, … ,𝑛𝑛}. Тогда существует такое натуральное N, что для любого 𝑖𝑖 ∈ {1, 2, … ,𝑛𝑛} 

𝑁𝑁 ≡ 𝑟𝑟𝑖𝑖 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑖𝑖) 
При этом, если найдутся два таких числа N1 и N2, то 

𝑁𝑁1 ≡ 𝑁𝑁2 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎1⋅ 𝑎𝑎2⋅ … ⋅ 𝑎𝑎𝑛𝑛) 
 
Следствие 1. Пусть есть два натуральных числа N и M такие, что для любого 𝑖𝑖 ∈ {1, 2, … ,𝑛𝑛} 

𝑁𝑁 ≡ 𝑀𝑀 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎𝑖𝑖) 
где a1, a2, …, an — набор попарно взаимно простых натуральных чисел. Тогда 

𝑁𝑁 ≡ 𝑀𝑀 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎1⋅ 𝑎𝑎2⋅ … ⋅ 𝑎𝑎𝑛𝑛) 
 

Перейдем к доказательству утверждения. Из условия 𝑒𝑒𝑒𝑒 ≡ 1(𝑚𝑚𝑚𝑚𝑚𝑚 𝜑𝜑(𝑛𝑛)) имеем, что для некоторого 
целого k выполнено тождество 

𝑒𝑒𝑒𝑒 = 1 + 𝑘𝑘(𝑝𝑝 − 1)(𝑞𝑞 − 1) 
Тогда 

𝑚𝑚𝑒𝑒𝑒𝑒 = 𝑚𝑚(𝑚𝑚𝑝𝑝−1)𝑘𝑘(𝑞𝑞−1) 
Если m не делится на простое число p, из малой теоремы Ферма имеем, что 

𝑚𝑚𝑝𝑝−1 ≡ 1(𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) 
Отсюда получаем, что 
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𝑚𝑚𝑒𝑒𝑒𝑒 ≡ 𝑚𝑚 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) 
Если m делится на p, также имеем 

𝑚𝑚𝑒𝑒𝑒𝑒 ≡ 0 ≡ 𝑚𝑚 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝) 
Аналогично для простого числа q имеем 

𝑚𝑚𝑒𝑒𝑒𝑒 ≡ 𝑚𝑚 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞) 
Отсюда по следствию из китайской теоремы об остатках для 𝑛𝑛 = 𝑝𝑝𝑝𝑝 получаем 

𝑚𝑚𝑒𝑒𝑒𝑒 ≡ 𝑚𝑚 (𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛) 
∎ 

Low Level Cryptographic Operations 
N. D. Baykov, A. N. Godunov 

Abstract. The goal of this manuscript is to provide an overview of the basic low level cryptographic operations 
at the heart of modern cryptographic protocols. We consider the examples of some widely used operations of crypto-
graphic hashing, encryption and the digital signature calculation. 
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