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Аннотация. Проведен анализ сбоеустойчивости полученных схем СФ-блока с их реальной топологи-
ческой оценкой. Предложена оценка выходных характеристик полученной схемы при помощи сигмоидальной 
функции. Данная функция может использоваться для сравнения различных схем, а также для поиска оптималь-
ной схемы заданной логической функции в эвристических алгоритмах, и алгоритмах машинного обучения. 
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1. Введение 
Развитие электронной компонентной базы 

для космических аппаратов приводит к возраста-
нию требований к ее характеристикам, таким как 
вычислительная производительность, радиаци-
онная стойкость и сбоеустойчивость. В совре-
менных условиях повышение производительно-
сти часто осуществляется как за счет увеличения 
архитектурной сложности (увеличение количе-
ства регистров общего назначения, увеличение 
операций типа регистр-регистр и память-па-
мять, появление дополнительных векторных со-
процессоров и т. д.), так при помощи увеличения 
объема внутренней памяти. Это приводит к 
необходимости увеличения степени интеграции 
современных систем на кристалле и переходу на 
более низкие технологические нормы производ-
ства электронно-компонентной базы, что свою 
очередь, повышает уязвимость интегральных 
микросхем к воздействию ионизирующего излу-
чения в космическом пространстве. В настоящее 
время уже на этапе разработки необходимо учи-
тывать требования к сбоеустойчивости систем 
на кристалле, а дальнейшее снижение техноло-
гических норм производства приводит к необхо-
димости поиска новых методов и средств для со-
здания более устойчивых к внешним воздей-
ствиям интегральных схем [1]. 

2. Постановка задачи 
Одним из наиболее распространенных мето-

дов повышения сбоеустойчивости является 
тройное модульное резервирование (ТМР) – этот 
метод позволяет эффективно маскировать сбои в 
элементах памяти. Существует множество раз-
личных методов троирования, имеющих свои 
достоинства и недостатки [2,3]. Однако, для со-
временных технологических процессов ни один 
из существующих методов аппаратного троиро-
вания не гарантирует полную стойкость к оди-
ночным эффектам по причине возникновения 
множественных сбоев в нескольких элементах 
одновременно, что приводит к сбоям как в ком-
бинационных путях, так и дереве распростране-
ния синхросигналов [4]. Предыдущее исследо-
вание [5] показало, что ни один из исследован-
ных вариантов тройного модульного резервиро-
вания не является абсолютно универсальным.  

Различают несколько механизмов маскирова-
ния сбоев в комбинационных схемах [6]:  

- логическое маскирование – сбой будет 
маскирован, если он затрагивает часть схемы, 
которая логически не влияет на конечный 
результат; 

- электрическое маскирование – сбой будет 
маскирован, если импульс, создаваемый 
попаданием частицы, затухает до того, как он 
достигнет входа триггера. 

- временное маскирование – сбой 
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маскирован, если индуцированный импульс не 
достигнет входа триггера в момент окна 
фиксации. 

Логический синтез является ключевым ком-
понентом современных процессов автоматиза-
ции проектирования микросхем. Основную за-
дачу логического синтеза можно сформулиро-
вать следующим образом: Дана логическая 
функция f: Bn → B (где B обозначает булево мно-
жество {0, 1}), Логическая функция f может 
быть реализована множеством эквивалентных 
логических схем. Необходимо найти логиче-
скую схему, реализующую заданную функцию f 
с минимальным числом логических элементов. 

На практике полный перебор всех возмож-
ных решений невозможен. Исторически первый 
эвристический алгоритм минимизации был 
предложен Р. Брайнтом на основе диаграмм дво-
ичного выбора (BDD) [7]. 

Данный алгоритм направлен на минимиза-
цию систем булевых функций, что позволяет 
уменьшать количество элементов в комбинаци-
онных путях, тем самым снижая максимальную 
занимаемую площадь, и как следствие, повы-
шать максимально возможное быстродействие 
синтезируемых логических функций. Сейчас в 
задаче логического синтеза применяют как эври-
стические алгоритмы (Espresso, MIS II и т. д.), 
так и алгоритмы машинного обучения [8]. 

Исследование влияния структуры схемы по-
казало, что ее маскирующие свойства могут из-
меняться в зависимости от выбранных методов 
синтеза [9]. Поэтому в рамках данной работы 
предлагается рассматривать только механизм ло-
гического маскирования и оценить сбоеустойчи-
вость на разных этапах алгоритма перебора всех 
возможных решений. 

Существуют как коммерческие САПР логи-
ческого синтеза (Design Compiler (Synopsys), 
Encounter RTL Compiler (Cadence Design 
Systems) и др.), так и проекты с открытым исход-
ным кодом: Yosys. В коммерческих САПР при 
логическом синтезе учитываются параметры 
временной спецификации для анализа быстро-
действия схемы, однако их алгоритм их работы 
не находится в открытом доступе. В рамках дан-
ного исследования в качестве инструмента логи-
ческого синтеза использовался Yosys. 

На практике особую важность при моделиро-
вании последствий множественных сбоев имеет 
реальное топологическое размещение стандарт-
ных ячеек. Кроме того, при проектировании то-
пологии микросхемы для достижения заданного 
быстродействия комбинационные пути могут 
подвергнуться изменениям (добавлены буферы, 
инверторы, меняться ветвление по входам и вы-
ходам), а также соблюдения правил проектиро-
вания. Таким образом, оценку их эффективности 
необходимо осуществлять с учетом точного по-
ложения стандартных ячеек на топологии мик-
росхемы. 

В рамках работ, проводимых в ФГУ ФНЦ 
НИИСИ РАН, был создан инструмент для моде-
лирования последствий сбоев в ячейках с учетом 
топологии [10]. Он представляет собой набор 
классов SystemVerilog и позволяет моделировать 
последствия сбоев во время моделирования нет-
листа. Цели для внесения сбоев могут задаваться 
при помощи выбора случайной координаты – 
инжектор генерирует квадратную область задан-
ного размера и на основе топологической инфор-
мации определяет какие ячейки оказались в этой 
области. Для всех пораженного последователь-
ного элемента моделируется переключение его в 
противоположное логическое состояние. Сбой в 
комбинационном элементе (SET) – как времен-
ное изменение логического состояния (длитель-
ностью 100 пс) на выходе элемента. 
2.1. Тестируемое устройство 

В качестве объекта исследования был выбран 
32-разрядный блок целочисленного умноже-
ния/деления, входящий в состав микропроцес-
сорного ядра. Функционально он содержит ло-
гику для выполнения операции деления – самой 
длительной в тактах инструкции в составе АЛУ, 
во время которой не происходит промежуточ-
ного сохранения результатов в и регистрах или 
ОЗУ. Кроме того, его структура достаточно неод-
нородна, в составе нет макроблоков и элементов 
памяти. Это позволит адекватно оценить влия-
ние оптимизации комбинационной логики на 
сбоеустойчивость. Дальнейшее исследование 
проводилось без изменения исходного RTL-кода. 
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Рис. 1. Схема тестового окружения 

2.2. Методика моделирования 
Для тестирования каждого из вариантов была 

разработана тестовая схема, которая состоит из 
двух версий блока делителя/умножителя: эта-
лонной и тестовой, в которую инжектировались 
сбои. Сначала в рамках тестовой задачи на входы 
А, B, IR1A (выбор соответствующего режима) 
обеих версий подаются случайные значения, по-
сле чего запускается тест, длительностью 35 так-
тов (максимальная длительность алгоритма де-
ления). В случайный момент выполнения теста 
инжектируется один сбой и в пораженных ячей-
ках моделируется одиночных эффектов. В конце 
теста значения выходов обеих версий сравнива-
ются при помощи операции ИСКЛ-ИЛИ, и при 
любом различии выходов фиксируется ошибка. 
Тестирование повторяется циклически 104 раз 
для набора статистических данных. 

Таблица 1. Характеристики СФ-блоков деле-
ния/умножения 

N Период, 
нс 

Площадь, 
мкм2 

Pf, 
мВт 

σ, 
10-2 

мм2 
Score 

0 2,4 147946,8 46,3 0,51 3,15 

10 2,2 147946,8 46,6 0,80 3,21 

20 2,2 148407,2 49,9 2,39 3,44 

30 2,3 148038,9 49,10 1,34 3,32 

40 2,3 148038,9 49,3 1,46 3,34 

50 2,2 148038,9 44,9 0,44 3,13 

55 2,3 147854,8 47,7 0,57 3,16 

За основу был взят маршрут логического 
синтеза при помощи инструмента с открытым 

исходным кодом Yosys, т. к. из рассмотренных 
инструментов синтеза только он позволяет полу-
чать промежуточные итерации минимизации ло-
гических функций. 

В рамках стандартного маршрута синтез ком-
бинационных путей выполняет другой инстру-
мент ABC, который использует алгоритм упро-
щения диаграмм двоичного выбора ESPRESSO. 
Алгоритм является итерационным и для данного 
исследуемого СФ-блока занимает 55 итераций. 

Для упрощения задачи проектирования топо-
логии было решено выбрать 6 этапов с интерва-
лом 10 итераций и последнюю итерацию. Далее 
была получена топология для каждой из этих 
схем. Характеристики этих схем приведены в 
таблице 1. 
2.3. Результаты моделирования 

Для оценки сбоеустойчивости разных вари-
антов использовалось сечение событий 
σ (в мм2). Сечение событий – это отношение 
числа тестов, в которых была зафиксирована 
ошибка к флюенсу (1): 

𝜎𝜎 = 𝑁𝑁
Ф

 ,  (1) 
где N – число тестов, завершившихся с ошиб-

кой, Ф – значение флюенса. 

 
Рис. 2. Диаграмма сечения событий на разных этапах 

оптимизации 
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При проектировании топологии использо-
вался единый изначальный коэффициент запол-
нения 50%. Т.к. площадь изменялась незначи-
тельно – это позволило набрать одинаковый 
флюенс для всех вариантов при помощи одного 
количества тестов 0,68×10-5 мм-2. 

Сечения событий для вариантов тестируе-
мого блока представлены на диаграмме. Как 
можно убедиться, с количеством итераций зна-
чение сечения событий изменяется немоно-
тонно. Можно отметить снижение стойкости к 
одиночным сбоям с увеличением количества ис-
пользуемых функций для итераций с 1 по 20. Та-
ким образом, можно констатировать, что увели-
чение количества элементов в схеме и создание 
подобной избыточности не всегда ведет к улуч-
шению стойкости к одиночным сбоям, а в случае 
20 итерации даже наоборот – к увеличению ко-
личества элементов, затронутых многократным 
сбоем и увеличению сечения событий в 4,7 раза. 

Также следует отметить, что последняя ите-
рация также не является наиболее сбоеустойчи-
вой из рассматриваемых. А в сравнении с исход-
ной схемой характеризуется 12% увеличением 
сечения событий. Самым низким значением се-
чения событий обладает вариант, соответствую-
щий 50-ой итерации – 0,44×10-2мм2. Помимо 
этого, необходимо отметить, что он обладает 
наилучшим быстродействием. 

Таким образом, возникает задача выбора оп-
тимальной схемы, обладающей наилучшими ха-
рактеристиками. При чем для получения опти-
мальной схемы необходимо учитывать началь-
ные параметры уже на этапе логического син-
теза.  

В качестве решения предлагается определе-
ние численной оценки спроектированных вари-
антов на основе функции сигмоиды. Для форми-
рования оценки предлагается использовать сле-
дующую функцию (2): 

𝑆𝑆 = 𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼(𝑃𝑃) + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽(𝑆𝑆) + ɣ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑃𝑃𝑓𝑓� + 
+ɳ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜎𝜎), (2) 

где α, β, ɣ и ɳ – коэффициенты влияния пери-
ода P, площади S, полной потребляемой мощно-
сти Pf и сечения событий σ. В рамках данной ра-
боты α, β, ɣ и ɳ приняты равными 1. Данная 
оценка позволяет оценить “качество” получен-
ной схемы – меньшему значению функции соот-
ветствует схема с лучшими характеристиками. 

В таблице 1 для каждого из вариантов также 
указаны рассчитанные значения данной функ-
ции. Как можно убедиться, наилучший вариант 
из исследуемых – это вариант, соответствующий 
50 итерации. 
3. Заключение 

В статье рассмотрена оценка сбоеустойчиво-
сти схем, полученных на разных этапах работы 
алгоритма минимизации логических функций во 
время операции логического синтеза. Показано, 
что последняя итерация соответствующая мини-
мальной с точки зрения количества логических 
элементов не является наиболее сбоеустойчивой 
из рассматриваемых. 

Самым низким значением сечения событий и 
наилучшим быстродействием обладает вариант, 
соответствующий 50-ой итерации. 

Предложена оценка выходных характеристик 
полученной схемы при помощи сигмоидальной 
функции. Использование данной функции поз-
воляет как сравнивать различные варианты схем, 
так и применять ее для поиска оптимальной 
схемы заданной логической функции в эвристи-
ческих алгоритмах и в алгоритмах машинного 
обучения. 

Публикация выполнена в рамках государ-
ственного задания ФГУ ФНЦ НИИСИ РАН по 
теме FNEF-2022-0008. 
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Abstract. The analysis of the fault stability of the obtained schemes with a real topological assessment is repre-
sented. Fault toleranсе evaluation of the resulting circuit using a sigmoidal function is proposed. This function can be 
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