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Abstract. We constructed and studied a model of interaction between a community of relatively weak prey 

agents and a strong predator agent in a two‑dimensional grid world (a lattice environment typical of grid automata and 

agent-based models). 

The predator can attack, kill, and consume prey agents. Each prey agent is controlled by a neural network and 

adopts one of two behavioral strategies: (1) normal activity, or (2) defense against the predator. 

In the normal activity strategy, prey agents lie dormant, feed, breed, and move through the grid. In the defense 

strategy, they attempt to escape, threaten, or attack the predator. The neural network outputs control each agent’s ac-

tions. The predator follows a simpler, rule-based protocol: it can lie dormant, evade threatening prey, or attack them. 

Its behavior is governed by basic logic. 

We analyzed the model using computer simulations. We found that, with realistic parameters, the prey agents 

collectively overcome the predator: prey resource levels increase steadily, while the predator’s resources decline to 

zero, leading to its extinction. We also discovered that successful defense requires a sufficiently abundant food supply; 

when prey food is scarce, the predator successfully suppresses the prey population. We used computer simulation to 

analyze the model. When the prey agents’ food supply is low, the predator agent suppresses the prey agents. 

Keywords: prey agents, predatory agent, prey-predator struggle. 

 

1. Introduction 

Models of interaction between autonomous 

agents have been studied since the early 1990s [1, 

2]. For example, L.S. Yaeger [3] and D. Ackley et 

al. [4] studied populations of competing agents. M. 

Burtsev et al. [5] researched a rather complex model 

of evolutionary self-organization and speciation in a 

population of agents. In some cases, a group of rel-

atively weak agents fights against a stronger agent. 

It is similar to the attack of a large flock of starlings 

on a sparrowhawk described by K. Lorenz [6]. V.G. 

Red’ko et al. [7] created and studied a computer 

simulation model of interaction between two groups 

of autonomous agents competing for the territory. It 

was demonstrated that a successful attack on the 

agents from an alien group leads to an expansion of 

the territory occupied by the attacking group. This 

paper considers a model of interaction between a 

sufficiently large group of relatively weak prey 

agents and a strong predator agent in a grid world. 

2. Model Overview 

Suppose that there is a society of relatively weak 

prey agents in the grid world. There is also a strong 

predatory agent. The predator agent can attack, kill, 

and eat the prey agents. The embedded control sys-

tem of the prey agent is a simple neural network. 

The predator agent has no embedded neural net-

work control system. Its behavior is governed by 

simple logic presented below. 

The world is a 1D chain of cells with the number 

of cells limited to N. The world is closed: if we move 

to the right beyond the Nth cell, we get to the 1st cell; 

if we move to the left beyond the 1st cell, we get to 

the Nth cell. Each cell may contain more than one 

agent. 

The cells also have food for the prey agents. The 

number of cells with food is M. The world time is 

discrete: t = 1, 2, … At the initial moment (t = 1) the 

food elements are randomly distributed across the 

cells. When t = 1, all prey agents are at random cells. 

The synapse weights of the neural networks of the 

prey agents are also random. It is assumed that the 

number of prey agents Na does not exceed a limit: 

Na <= Namax. 

Let us describe the actions of the prey agents. In 

each time increment, each prey agent performs one 

action. The actions of the prey agents are governed 

by their neural networks. 

In a peaceful strategy, the prey agents can: (1) 

rest (do nothing); (2) feed; (3) move to neighboring 

cells; and (4) breed. 

In a defense strategy, the prey agents can: (1) es-

cape from the predator agent (if the prey agent finds 

the predator in the same cell, it moves to a neighbor-

ing cell); (2) threatening the predator agent; (3) at-

tacking the predator agent (only if both the prey and 

predator agents are in the same cell). 

Each agent has some resources (energy budget). 

When a prey agent feeds on the food in its cell, 

the energy budget is replenished. Other actions 

spend the energy and reduce the agent’s budget. If 

the energy budget goes negative, the agent dies. 
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With the “rest” action, the consumption of the 

prey agent energy is lowest. 

The feeding occurs as follows. If there is food in 

the cell in which the prey agent is located, the agent 

eats that food. When the neural network orders to 

feed but there is no food in the prey agent’s cell, the 

agent spends a small amount of energy identical to 

the “rest” action. If there is food in the cell, the prey 

agent eats all the available food at once. Once an 

agent eats food in its cell, a new food element ap-

pears in another randomly selected, food-free cell. 

This rule maintains the number of food elements 

constant. 

The “move” action is moving to a neighboring 

cell. The direction is random. 

When a prey agent breeds, the child agent ap-

pears in the same cell as the parent agent. A child is 

born if the total number of agents Na is less than 

Namax. When a new agent is born, the parent agent 

donates half of its energy budget to the child agent. 

The synapse weights of the child’s neural network 

are equal to that of the parent’s neural network with 

some small mutations. 

Upon consuming a food element, the energy 

budget of the prey agent is increased by Δr1. A prey 

agent’s energy consumption for rest, moving to a 

neighboring cell, threatening the predator agent, and 

attacking it are Δr2, Δr3, Δr4, Δr5, and Δr6, respec-

tively. We assume that Δr2 < Δr3 < Δr4 < Δr5 < Δr6. 

The predator agent can: (1) rest (do nothing); (2) 

move to the neighboring cells to evade the threaten-

ing prey agents; (3) attack a prey agent in the same 

cell. If a prey agent’s energy budget when attacked 

(and killed) by the predator goes negative, the prey 

agent is assumed to be eaten by the predator. 

The predator’s energy gain from eating a killed 

prey agent is ΔR1. The predator agent’s energy con-

sumption for rest, moving to a neighboring cell, and 

attacking a prey agent are ΔR2, ΔR3, and ΔR4, re-

spectively. We assume that ΔR2 < ΔR3 < ΔR. 

Let’s consider the predator agent’s logic in de-

tail. In each time increment, the predator agent per-

forms one action as follows:  

(1) The predator agent first estimates the number 

of threatening prey agents in its cell and the right 

and left neighboring cells. If the number of prey 

agents in the predator’s cell is greater than in the 

neighboring cells, the predator moves one cell to the 

side where the number of threatening prey agents is 

smaller; if this number is the same on both sides, the 

predator chooses the side to move randomly. Addi-

tionally, with a certain probability Pmove the predator 

can move to a cell with fewer threatening prey 

agents regardless of the number of the threatening 

agents in the predator’s cell. 

(2) If the predator does not evade the threatening 

prey agents, and there are prey agents in the preda-

tor’s cell, the predator starts fighting the prey 

agents: it attacks a randomly selected prey agent in 

the predator’s cell. If there are also prey agents in 

the cell ready to fight, they all engage in a fight 

against the predator. The fight reduces the energy 

budgets of both the prey agent (attacked by the pred-

ator) and the predator (for the energy consumption 

values please refer to equations (2), and (3) below). 

If a prey agent’s energy budget goes negative (the 

prey agent dies), the predator agent eats it, and the 

predator’s energy budget increases significantly. If 

the predator agent’s energy budget goes negative, 

the predator dies. 

(3) If the predator agent does not move away 

from the threatening prey agents or does not engage 

in a fight with them, it takes the “rest” action. 

The predator agent’s priorities are: (1) move; (2) 

fight; and (3) rest. 

Consider the loss of the agents being attacked. 

The energy loss of any agent after a hit(s) is pro-

portional to the total strength of the hits received. 

For a prey agent, the loss is ΔrD = k1FP, where FP is 

the strength of the predator’s hit; k1 is the propor-

tionality factor (common value for all hits). For the 

predator agent, the loss is ΔRD = k1FS, where FS is 

the total strength of all hits by the prey agents at-

tacking the predator at the moment. The strength of 

an individual is assumed to be proportional to the 

loss of the attacker’s energy. For the predator agent, 

the strength is FS = nFk2Δr6, where nF is the number 

of prey agents attacking the predator at the moment, 

and k2 is another proportionality factor. Summariz-

ing the above equation, we obtain that the energy 

loss of a prey agent when it hits the predator agent 

is: 

 

ΔrD = k1k2ΔR4 = kΔR4 ,   (1) 

 

The predator agent’s energy loss is: 

 

ΔRD = k1nFk2Δr5 = knFΔr5 , k = k1k2 . (2) 

 

That is, it is sufficient to introduce just one pro-

portionality factor k to characterize the agents’ en-

ergy losses. The number of prey agents nF simulta-

neously hitting the predator agent is determined by 

their actions invoked by their neural network control 

systems. 

Let us consider the sensory signals arriving at 

the inputs of the neural networks of the prey agents. 

These signals are: 

(1) The agent’s energy budget. 

(2) The total number of prey agents in the nearest 

neighborhood of the agent (in the same cell and the 

two neighboring cells on the right and left; it is a 

single combined signal). 

(3) Presence of food in the agent’s cell. 

(4) Presence of food in the cell on the right 

(5) Presence of food in the cell on the left 
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(6) Presence of the predator in the agent’s cell. 

(7) Presence of the predator in the cell on the 

right 

(8) Presence of the predator in the cell on the left  

Therefore, there are 8 input signals and 8 inputs 

to the neural network of the prey agent. 

Now let us describe the neural network. The out-

puts of the neural network control the agent’s ac-

tions. The neural network has a set of synapse 

weights W. This is a single-layer artificial feed-for-

ward neural network. To describe its operation, we 

will use the approach proposed in [5]. To calculate 

the values of the output vector O, the input vector I 

is multiplied by the weight matrix Wk whose values 

are bounded by the [-Wmax; Wmax] range: 

 

Oj = ∑ 𝑤𝑖𝑗𝑖𝑖𝑖 .    (3) 

 

The output vector O contains 7 components rep-

resenting the following prey agent’s actions: 

(1) rest (do nothing)  

(2) feed  

(3) move to one of the neighboring cells  

(4) breed  

(5) escape from the predator agent by moving to 

a neighboring cell  

(6) threaten the predator agent  

(7) attack the predator agent. 

At each time increment, the prey agent performs 

one of these actions. Usually, it is the action corre-

sponding to the max output Oj. Besides that, with a 

certain probability Prand a prey agent can perform 

another action selected randomly. More specifically, 

with 1 – Prand probability the action is the one corre-

sponding to the maximum output of the neural net-

work, and with Prand probability, the action is ran-

dom. For random actions, the probabilities of select-

ing each of the 7 possible actions are equal. Note 

that Prand differs for different agents and changes as 

the population of prey agents evolves. 

The synapse weights are also adjusted in the 

course of evolution. The initial synapse weights of 

the prey agent neural networks (at t = 1) are random: 

it is assumed that the wij values are uniformly dis-

tributed in the [–Wmax,+Wmax] range. Once a child of 

a prey agent is born, it inherits the synapse weights 

of the parent agent’s neural networks with small mu-

tations: each weight in the parent’s weight matrix is 

modified by adding either –PM or +PM with equal 

probability. The PM value represents the rate of mu-

tations. The synapse weights cannot be beyond the 

acceptable [–Wmax,+Wmax] range. 

The probability of randomly selecting a Prand 

varies as follows. 

The initial Prand values at t = 1 for all agents are 

identical: Prand (t = 1) = Prand0. Then the Prand values 

change during breeding: they are inherited in some 

variations. For a child agent, a value uniformly dis-

tributed in the [–Pr, +Pr] range is added to the Prand 

of the parent agent. The Prand values cannot exceed 

the [0, 1] range. Note that random selection of ac-

tions is similar to noise or random evolution and op-

timization of the prey agent behavior. Intuitively, a 

higher rate of random search can be beneficial when 

the agent's behavior is far from optimal. Otherwise, 

the rate can be reduced. 

We used computer simulation to analyze the 

model. 

 At the initial moment, we defined a grid world 

with some food in the cells. All prey agents and the 

predator were put into the cells. The food elements 

and the agents were randomly placed in the cells. 

Next, initial neural networks of the prey agents were 

built. For each prey agent, we specified the proba-

bilities of randomly selecting the action Prand (t = 1) 

= Prand0. Then the agents operated as described 

above. 

Since some of the prey agents may die from 

predator attacks or due to dropping the energy 

budget below zero, we counted the “live” agents in 

the population at each time increment. If the number 

of agents became less than the initial population size 

of prey agents Na(t = 1) = Na0 = 100, we added new 

agents. The positions and synapse weights of these 

new agents were randomized. The energy budget 

and probability of randomly choosing the action 

Prand0 were equal to that of a prey agent in the initial 

population. 

The control systems of the prey evolved, and the 

agent population self-organized. There was no train-

ing. It was a pure evolution and survival of the fittest 

agents. 

3. Computer Simulation Results 

3.1. Basic Simulation Parameters 

The size of the grid world is N = 50 cells. 

The number of cells with food is M = 25. 

The initial population of prey agents is  

Na(t = 1) = 100. 

The max number of prey agents is Namax = 200. 

The max value of the synapse weight Wmax = 1. 

The mutation rate, which represents the parent-

child changes in the synapse weights is PM = 0.03. 

The initial probability of randomly selecting an 

action is Prand0 = 0.3. 

The variation of the parent-child probability of 

randomly choosing an action is Pr = 1. 

The probability of the predator evading the 

threatening prey agents (see the predator agent be-

havior above) is Pmove = 0.5. 

A prey agent’s energy gain after eating a food el-

ement is Δr1 = 0.1. 

A prey agent’s energy loss for resting is  
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Δr2 = 0.005. 

A prey agent’s energy loss for moving by one 

cell is Δr3 = 0.01. 

A prey agent’s energy loss for breeding is  

Δr4 = 0.02 (besides that, a parent agent gives half of 

its energy budget to the child). 

A prey agent’s energy loss for threatening the 

predator is Δr5 = 0.03. 

A prey agent’s energy loss for hitting the preda-

tor is Δr6 = 0.05. 

The predator’s energy gain when eating a killed 

prey agent is ΔR1 = 1. 

The predator’s energy loss for resting is  

ΔR2 = 0.01. 

The predator’s energy loss for moving by one 

cell is ΔR3 = 0.02. 

The predator’s agent energy loss for hitting a 

prey agent is ΔR4 = 0.5. 

The initial energy budget of a prey agent is  

r(t = 1) = 1. 

The initial energy budget of the predator agent is 

R(t = 1) = 10. 

The proportionality factor k, which represents 

the agents’ energy losses when they are hit (refer to 

equations (1), (2) above) is k = 1. 

Note that some parameters were varied during 

the computer modeling. The results of this variation 

are covered separately. 

3.2. Dynamics of Prey Agents Popula-

tion in the Presence of a Predator. 

Basic Simulation 

We analyzed how the following variables vary in 

time: the population-average energy budget of a 

prey agent r(t), predator’s energy budget R(t), the 

number of prey agents performing any of the 7 ac-

tions, the share of actions performed by the predator 

at a given moment, the number of prey agents dead 

by the current time increment Nad, the total number 

of prey agents, the average probability of a random 

selection of an action Prand (t). We simulated 1,000 

time increments. All the resulting time dependen-

cies were averaged over 1,000 simulation runs. 

Fig. 1 shows the population-average energy 

budget of the prey agents and the predator energy 

budget vs. time. 

As can be seen from Fig. 1, after a short initial 

period (when t < 200), the energy budget of the prey 

agents grows steadily. The predator’s energy budget 

first grows and then drops to zero. Initially, the prey 

agents often die and get eaten by the predator, so the 

predator’s energy budget grows at first. Subse-

quently, the predator’s energy budget decreases, and 

at t = 831 the predator dies in all 1,000 independent 

simulation runs. 
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Fig. 1. Population-average energy budget of the prey 

agents <r> and predator’s energy budget R vs. time t. 

Fig. 2 shows the number of prey agents’ actions 

vs. time for a peaceful strategy (rest, feed, move to 

neighboring cells, breed). 
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Fig. 2. The number of prey agents’ actions vs. time  

for a peaceful strategy: rest (a1), feed (a2), move to 

neighboring cells (a3), and breed (a4). 

It can be seen that at the very initial moments, 

the prey agents intensively breed and spend their en-

ergy budgets including the parent agents giving half 

of their budgets to children. The analysis of the com-

puter simulation results indicates that rather quickly 

the agents stop having sufficient energy for breed-

ing, and the breeding rate falls. Fig. 2 also demon-

strates that the number of “feed” actions grows in-

tensively in time and becomes predominant. 

Fig. 3 shows the number of prey agents’ actions 

vs. time for the defense strategy (evading, threaten-

ing, attacking the predator agent). 

Figs. 2, and 3 show that at the initial moments, 

the actions of the prey agents are rather chaotic. 

Only after t ≈ 800, the distribution of prey agents’ 

actions stabilizes. Note that Figs. 2, and 3 show the 

agent’s intended actions of feeding and attacking the 

predator. A real attack on the predator occurs only 

under certain conditions: (a) the predator must be in 

the same cell as the prey agent, and (b) the predator 

(like a prey agent) must also attack the prey agent. 

The “feed” action also occurs under a certain condi-
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tion: when there is a food element in the cell occu-

pied by the prey agent. 
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Fig. 3. The number of prey agents’ actions vs. time  

for the defense strategy: evading (a5), threatening (a6), 

and attacking the predator (a7). 

Fig. 4 shows the share of the predator’s active 

actions (evading threatening prey agents, hitting 

prey agents, resting) for 1,000 cases. 
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Fig. 4. The share of the active actions of the predators 

engaged with the prey agents vs. time t: evading  

threatening prey agents (b1), attacking a prey agent (b2), 

resting (b3). 

The number of deceased prey agents vs. time is 

shown in Fig. 5. 

The total number of prey agents vs. time is 

shown in Fig. 6. 
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Fig. 5. The number of dead prey agents vs. time t. 

Fig. 7 shows the probability of randomly select-

ing an action Prand (t) for the prey agents vs. time. It 

can be seen that in the initial moments, the intensity 

of the random search for an action is high. As time 

passes, the intensity decreases. This is similar to the 

“gene-mutator” model [8], which assumes that the 

mutation rate can vary and be inherited. If a popula-

tion enters a new environment, where active random 

search for new properties is advantageous, the mu-

tation rate increases, while during prolonged resi-

dence in a stable environment, where preservation 

of already attained properties is more important, the 

mutation rate decreases. 
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Fig. 6. The total number of prey agents nT vs. time t. 
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Fig. 7. The probability of randomly selecting an  

action Prand (t) for the prey agents vs. time t. 

3.3. Parameter-Varying Simulation 

We ran 3,000 such simulations and averaged the 

results over 100 independent runs. 

We varied the grid world size. For the basic sim-

ulation, the world size was N = 50 cells. When we 

reduced it to N = 10 cells, the dependences were 

similar to the ones above for N = 50. The significant 

changes for N = 10 are as follows: the number of the 

prey agents’ “feed” actions decreases slightly; (2) 

the energy budget of the prey agents at t = 1,000 de-

creases significantly to r(1,000)  6.6, while at N = 

50 it is r(1,000)  10.5 (refer to Fig. 1). This can be 

interpreted as follows. When the world is small, the 

prey agents have less food, so their energy budgets 

decrease. 
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When the world size increases to N = 100 cells, 

the time dependencies are similar to the N = 50 case. 

The changes are as follows: (1) for 100 independent 

simulation runs, in all cases the predator dies before 

t = 1,746; (2) the prey agents’ energy budget at t = 

1,000 decreases to r(1,000)  2.3. We also observed 

that at N = 100, sometimes the foo elements were 

distributed unevenly: (a) there were cell chains (ap-

proximately 10 cells long) with no food at all; (b) 

there were cell chains with food in each cell. Similar 

results were reported in [9]. Due to such an uneven 

distribution, the prey agents had difficulty finding 

food and therefore had a radically reduced energy 

budget compared to the N = 50 case. 

We also ran simulations with fewer food ele-

ments than in the main analysis (M = 25). We con-

sidered M = 20, M = 15, M = 10 (N = 50 for all 

cases). At M = 20, the results only change slightly: 

the prey agents’ energy budget decreases (at t = 

1,000 it is r(1,000)  6.4) and the predator’s lifespan 

changes slightly (at t = 925 the predator dies in all 

100 independent simulations). At M = 15, the situa-

tion changes significantly: the prey agents’ energy 

budget decreases significantly, and the predator 

agent survives up to t = 3,000. The prey agents’ and 

predator’s energy budgets for M = 15 are shown in 

Fig. 8. At M = 10, the variations of the variables 

change drastically: the predator survives until t = 

3,000 in all 100 independent simulations, and with 

time the predator’s energy budget increases to 

R(3,000)  150, while the prey agents’ energy 

budget decrease to r(3,000)  0.2, i.e. in this case the 

predators actively feed on the prey agents, replen-

ishing their energy budgets, and suppress the “life” 

of the prey agents. 
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Fig. 8. Population-averaged prey agents’ energy budgets 

<r> and predator energy budget R vs. time t. The number 

of food elements is reduced to M = 15. 

4. Conclusion 

We created and analyzed a computer simulation 

model representing a collective defense by weak 

prey agents against a strong predator agent. It is 

shown that a group of prey agents is able to resist a 

strong predator agent. In particular, prey agents can 

threaten and collectively attack the predator. By 

evading threatening prey agents, and repelling their 

attacks, the predator loses its energy and may die. 

We also demonstrated that prey agents need a fair 

amount of food to be able to defend themselves. 

Given enough food, relatively weak prey agents 

overwhelm a strong predator. When the prey agents’ 

food supply is low, the predator agent suppresses the 

prey agents. 

This is a part of the FNEF-2024-0001 Develop-

ment and Deployment of Trusted AI Systems based 

on New Mathematical and Algorithmic Approaches 

and Fast Computing Models Compatible with Do-

mestic Computer Hardware government contract 

(10230321,00070-3-1.2.1). 

Модель обороны коллектива слабых мирных 

агентов от сильного агента-хищника 

В.Г. Редько 

 НИЦ «КУРЧАТОВСКИЙ ИНСТИТУТ» — НИИСИ, г. Москва, Российская Федерация; 
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Аннотация. Построена и изучена модель взаимодействия сообщества относительно слабых мирных 

агентов в клеточном мире с сильным агентом-хищником. Агент-хищник может нападать на мирных агентов, 

убивать и съедать их. Внутренняя система управления мирного агента представляет собой нейронную сеть. 

Имеются две стратегии мирных агентов: 1) обычная мирная жизнь, 2) оборона от сильного агента-хищника. В 

первой стратегии мирные агенты выполняют следующие действия: находиться в состоянии покоя, питаться, 

размножаться, перемещаться по миру. Во второй стратегии действия мирных агентов таковы: уход от агента-

хищника, угроза агенту-хищнику, нападение на агента-хищника. Выходами нейронной сети являются сигналы, 

определяющие действия мирного агента. Агент-хищник выполнять следующие действия: находиться в состоя-

нии покоя, уходить от угрожающих мирных агентов, нападать на мирных агентов. Повеление агента-хищника 

определяется простыми логическими правилами. Анализ модели производился путем компьютерного модели-

рования. Показано, что при достаточно естественном выборе параметров модели коллектив мирных агентов 

побеждает агента-хищника, а именно, с течением времени ресурс мирных агентов уверенно растёт, а ресурс 
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агента-хищника в итоге уменьшается до нуля, т.е. агент-хищник погибает. Также продемонстрировано, что для 

обеспечения способности к такой обороне, мирным агентам нужно достаточно большое количество пищи. При 

малом количестве пищи мирных агентов агент-хищник подавляет мирных агентов. 

Ключевые слова: мирные агенты, агент-хищник, борьба между агентами 
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