Tpyou HUUCH, Tom 15 Nel DOI 10.25682/NIIS1.2025.1.0009

Modeling the Defense of Weak Prey Agents
Against a Strong Predator Agent

V.G. Red’ko
NRC "Kurchatov Institute" — SRISA, Moscow, Russian Federation, vgredko@gmail.com

Abstract. We constructed and studied a model of interaction between a community of relatively weak prey
agents and a strong predator agent in a two-dimensional grid world (a lattice environment typical of grid automata and
agent-based models).

The predator can attack, kill, and consume prey agents. Each prey agent is controlled by a neural network and
adopts one of two behavioral strategies: (1) normal activity, or (2) defense against the predator.

In the normal activity strategy, prey agents lie dormant, feed, breed, and move through the grid. In the defense
strategy, they attempt to escape, threaten, or attack the predator. The neural network outputs control each agent’s ac-
tions. The predator follows a simpler, rule-based protocol: it can lie dormant, evade threatening prey, or attack them.
Its behavior is governed by basic logic.

We analyzed the model using computer simulations. We found that, with realistic parameters, the prey agents
collectively overcome the predator: prey resource levels increase steadily, while the predator’s resources decline to
zero, leading to its extinction. We also discovered that successful defense requires a sufficiently abundant food supply;
when prey food is scarce, the predator successfully suppresses the prey population. We used computer simulation to

analyze the model. When the prey agents’ food supply is low, the predator agent suppresses the prey agents.

Keywords: prey agents, predatory agent, prey-predator struggle.

1. Introduction

Models of interaction between autonomous
agents have been studied since the early 1990s [1,
2]. For example, L.S. Yaeger [3] and D. Ackley et
al. [4] studied populations of competing agents. M.
Burtsev et al. [5] researched a rather complex model
of evolutionary self-organization and speciation in a
population of agents. In some cases, a group of rel-
atively weak agents fights against a stronger agent.
It is similar to the attack of a large flock of starlings
on a sparrowhawk described by K. Lorenz [6]. V.G.
Red’ko et al. [7] created and studied a computer
simulation model of interaction between two groups
of autonomous agents competing for the territory. It
was demonstrated that a successful attack on the
agents from an alien group leads to an expansion of
the territory occupied by the attacking group. This
paper considers a model of interaction between a
sufficiently large group of relatively weak prey
agents and a strong predator agent in a grid world.

2. Model Overview

Suppose that there is a society of relatively weak
prey agents in the grid world. There is also a strong
predatory agent. The predator agent can attack, kill,
and eat the prey agents. The embedded control sys-
tem of the prey agent is a simple neural network.

The predator agent has no embedded neural net-
work control system. Its behavior is governed by
simple logic presented below.

The world is a 1D chain of cells with the number

of cells limited to N. The world is closed: if we move
to the right beyond the N cell, we get to the 1% cell;
if we move to the left beyond the 1% cell, we get to
the M cell. Each cell may contain more than one
agent.

The cells also have food for the prey agents. The
number of cells with food is M. The world time is
discrete: 1 =1, 2, ... At the initial moment (¢ = 1) the
food elements are randomly distributed across the
cells. When ¢ =1, all prey agents are at random cells.
The synapse weights of the neural networks of the
prey agents are also random. It is assumed that the
number of prey agents N, does not exceed a limit:
N a <= N amax-

Let us describe the actions of the prey agents. In
each time increment, each prey agent performs one
action. The actions of the prey agents are governed
by their neural networks.

In a peaceful strategy, the prey agents can: (1)
rest (do nothing); (2) feed; (3) move to neighboring
cells; and (4) breed.

In a defense strategy, the prey agents can: (1) es-
cape from the predator agent (if the prey agent finds
the predator in the same cell, it moves to a neighbor-
ing cell); (2) threatening the predator agent; (3) at-
tacking the predator agent (only if both the prey and
predator agents are in the same cell).

Each agent has some resources (energy budget).

When a prey agent feeds on the food in its cell,
the energy budget is replenished. Other actions
spend the energy and reduce the agent’s budget. If
the energy budget goes negative, the agent dies.

65



Tpyowt HUHCH, Tom 15 Nel

DOI 10.25682/NIIS1.2025.1.0009

With the “rest” action, the consumption of the
prey agent energy is lowest.

The feeding occurs as follows. If there is food in
the cell in which the prey agent is located, the agent
eats that food. When the neural network orders to
feed but there is no food in the prey agent’s cell, the
agent spends a small amount of energy identical to
the “rest” action. If there is food in the cell, the prey
agent eats all the available food at once. Once an
agent eats food in its cell, a new food element ap-
pears in another randomly selected, food-free cell.
This rule maintains the number of food elements
constant.

The “move” action is moving to a neighboring
cell. The direction is random.

When a prey agent breeds, the child agent ap-
pears in the same cell as the parent agent. A child is
born if the total number of agents N, is less than
Namax. When a new agent is born, the parent agent
donates half of its energy budget to the child agent.
The synapse weights of the child’s neural network
are equal to that of the parent’s neural network with
some small mutations.

Upon consuming a food element, the energy
budget of the prey agent is increased by Ar;. A prey
agent’s energy consumption for rest, moving to a
neighboring cell, threatening the predator agent, and
attacking it are Ara, Ars, Ara, Ars, and Arg, respec-
tively. We assume that Ar, < Ary < Ary < Ars < Ars.

The predator agent can: (1) rest (do nothing); (2)
move to the neighboring cells to evade the threaten-
ing prey agents; (3) attack a prey agent in the same
cell. If a prey agent’s energy budget when attacked
(and killed) by the predator goes negative, the prey
agent is assumed to be eaten by the predator.

The predator’s energy gain from eating a killed
prey agent is AR;. The predator agent’s energy con-
sumption for rest, moving to a neighboring cell, and
attacking a prey agent are AR», AR3, and ARa, re-
spectively. We assume that AR, < AR3 < AR.

Let’s consider the predator agent’s logic in de-
tail. In each time increment, the predator agent per-
forms one action as follows:

(1) The predator agent first estimates the number
of threatening prey agents in its cell and the right
and left neighboring cells. If the number of prey
agents in the predator’s cell is greater than in the
neighboring cells, the predator moves one cell to the
side where the number of threatening prey agents is
smaller; if this number is the same on both sides, the
predator chooses the side to move randomly. Addi-
tionally, with a certain probability P the predator
can move to a cell with fewer threatening prey
agents regardless of the number of the threatening
agents in the predator’s cell.

(2) If the predator does not evade the threatening
prey agents, and there are prey agents in the preda-
tor’s cell, the predator starts fighting the prey

agents: it attacks a randomly selected prey agent in
the predator’s cell. If there are also prey agents in
the cell ready to fight, they all engage in a fight
against the predator. The fight reduces the energy
budgets of both the prey agent (attacked by the pred-
ator) and the predator (for the energy consumption
values please refer to equations (2), and (3) below).
If a prey agent’s energy budget goes negative (the
prey agent dies), the predator agent eats it, and the
predator’s energy budget increases significantly. If
the predator agent’s energy budget goes negative,
the predator dies.

(3) If the predator agent does not move away
from the threatening prey agents or does not engage
in a fight with them, it takes the “rest” action.

The predator agent’s priorities are: (1) move; (2)
fight; and (3) rest.

Consider the loss of the agents being attacked.

The energy loss of any agent after a hit(s) is pro-
portional to the total strength of the hits received.
For a prey agent, the loss is Arp = kiFp, where Fp is
the strength of the predator’s hit; k; is the propor-
tionality factor (common value for all hits). For the
predator agent, the loss is ARp = kiF’s, where F is
the total strength of all hits by the prey agents at-
tacking the predator at the moment. The strength of
an individual is assumed to be proportional to the
loss of the attacker’s energy. For the predator agent,
the strength is Fs = npk2Ars, where nr is the number
of prey agents attacking the predator at the moment,
and k, is another proportionality factor. Summariz-
ing the above equation, we obtain that the energy
loss of a prey agent when it hits the predator agent
is:

AVD=k1k2AR4=kAR4, (1)
The predator agent’s energy loss is:
ARp = kinpkoArs = knpArs , k=kiky . (2)

That is, it is sufficient to introduce just one pro-
portionality factor k to characterize the agents’ en-
ergy losses. The number of prey agents nr simulta-
neously hitting the predator agent is determined by
their actions invoked by their neural network control
systems.

Let us consider the sensory signals arriving at
the inputs of the neural networks of the prey agents.
These signals are:

(1) The agent’s energy budget.

(2) The total number of prey agents in the nearest
neighborhood of the agent (in the same cell and the
two neighboring cells on the right and left; it is a
single combined signal).

(3) Presence of food in the agent’s cell.

(4) Presence of food in the cell on the right

(5) Presence of food in the cell on the left
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(6) Presence of the predator in the agent’s cell.

(7) Presence of the predator in the cell on the
right

(8) Presence of the predator in the cell on the left

Therefore, there are 8§ input signals and 8 inputs
to the neural network of the prey agent.

Now let us describe the neural network. The out-
puts of the neural network control the agent’s ac-
tions. The neural network has a set of synapse
weights W. This is a single-layer artificial feed-for-
ward neural network. To describe its operation, we
will use the approach proposed in [5]. To calculate
the values of the output vector O, the input vector |
is multiplied by the weight matrix Wk whose values
are bounded by the [-Wiax; W] range:

0 =X wijl;. 3

The output vector O contains 7 components rep-
resenting the following prey agent’s actions:

(1) rest (do nothing)

(2) feed

(3) move to one of the neighboring cells

(4) breed

(5) escape from the predator agent by moving to
a neighboring cell

(6) threaten the predator agent

(7) attack the predator agent.

At each time increment, the prey agent performs
one of these actions. Usually, it is the action corre-
sponding to the max output O;. Besides that, with a
certain probability P..« a prey agent can perform
another action selected randomly. More specifically,
with 1 — P, probability the action is the one corre-
sponding to the maximum output of the neural net-
work, and with P,.s probability, the action is ran-
dom. For random actions, the probabilities of select-
ing each of the 7 possible actions are equal. Note
that P4 differs for different agents and changes as
the population of prey agents evolves.

The synapse weights are also adjusted in the
course of evolution. The initial synapse weights of
the prey agent neural networks (at = 1) are random:
it is assumed that the w;; values are uniformly dis-
tributed in the [—Wax,+ Winax] range. Once a child of
a prey agent is born, it inherits the synapse weights
of the parent agent’s neural networks with small mu-
tations: each weight in the parent’s weight matrix is
modified by adding either —Py or +Py with equal
probability. The Py value represents the rate of mu-
tations. The synapse weights cannot be beyond the
acceptable [—Wiax,+ Winax] range.

The probability of randomly selecting a P
varies as follows.

The initial P values at ¢ =1 for all agents are
identical: Prana (t = 1) = Pranao. Then the Pruuq values
change during breeding: they are inherited in some

variations. For a child agent, a value uniformly dis-
tributed in the [-P,, +P,] range is added to the Pruma
of the parent agent. The P, values cannot exceed
the [0, 1] range. Note that random selection of ac-
tions is similar to noise or random evolution and op-
timization of the prey agent behavior. Intuitively, a
higher rate of random search can be beneficial when
the agent's behavior is far from optimal. Otherwise,
the rate can be reduced.

We used computer simulation to analyze the
model.

At the initial moment, we defined a grid world
with some food in the cells. All prey agents and the
predator were put into the cells. The food elements
and the agents were randomly placed in the cells.
Next, initial neural networks of the prey agents were
built. For each prey agent, we specified the proba-
bilities of randomly selecting the action Py (= 1)
= Praao. Then the agents operated as described
above.

Since some of the prey agents may die from
predator attacks or due to dropping the energy
budget below zero, we counted the “live” agents in
the population at each time increment. If the number
of agents became less than the initial population size
of prey agents N,(t=1) = N, = 100, we added new
agents. The positions and synapse weights of these
new agents were randomized. The energy budget
and probability of randomly choosing the action
Pranao were equal to that of a prey agent in the initial
population.

The control systems of the prey evolved, and the
agent population self-organized. There was no train-
ing. It was a pure evolution and survival of the fittest
agents.

3. Computer Simulation Results

3.1. Basic Simulation Parameters

The size of the grid world is N = 50 cells.

The number of cells with food is M = 25.

The initial population of prey agents is
Ny(t=1)=100.

The max number of prey agents is Namax = 200.

The max value of the synapse weight W = 1.

The mutation rate, which represents the parent-
child changes in the synapse weights is Py = 0.03.

The initial probability of randomly selecting an
action is Prunao = 0.3.

The variation of the parent-child probability of
randomly choosing an action is P, = 1.

The probability of the predator evading the
threatening prey agents (see the predator agent be-
havior above) is Ppove = 0.5.

A prey agent’s energy gain after eating a food el-
ement is Ar; = 0.1.

A prey agent’s energy loss for resting is

67



Tpyowt HUHCH, Tom 15 Nel

DOI 10.25682/NIIS1.2025.1.0009

Ar, =0.005.

A prey agent’s energy loss for moving by one
cell is Ar; =0.01.

A prey agent’s energy loss for breeding is
Ars=0.02 (besides that, a parent agent gives half of
its energy budget to the child).

A prey agent’s energy loss for threatening the
predator is Ars = 0.03.

A prey agent’s energy loss for hitting the preda-
tor is Ars = 0.05.

The predator’s energy gain when eating a killed
prey agent is AR; = 1.

The predator’s energy loss for resting is
AR>=0.01.

The predator’s energy loss for moving by one
cell is AR; = 0.02.

The predator’s agent energy loss for hitting a
prey agent is AR, = 0.5.

The initial energy budget of a prey agent is
rt=1)=1.

The initial energy budget of the predator agent is
R(=1)=10.

The proportionality factor k, which represents
the agents’ energy losses when they are hit (refer to
equations (1), (2) above) is k= 1.

Note that some parameters were varied during
the computer modeling. The results of this variation
are covered separately.

3.2. Dynamics of Prey Agents Popula-
tion in the Presence of a Predator.
Basic Simulation

We analyzed how the following variables vary in
time: the population-average energy budget of a
prey agent r(¢), predator’s energy budget R(), the
number of prey agents performing any of the 7 ac-
tions, the share of actions performed by the predator
at a given moment, the number of prey agents dead
by the current time increment N4, the total number
of prey agents, the average probability of a random
selection of an action P (t). We simulated 1,000
time increments. All the resulting time dependen-
cies were averaged over 1,000 simulation runs.

Fig. 1 shows the population-average energy
budget of the prey agents and the predator energy
budget vs. time.

As can be seen from Fig. 1, after a short initial
period (when ¢ < 200), the energy budget of the prey
agents grows steadily. The predator’s energy budget
first grows and then drops to zero. Initially, the prey
agents often die and get eaten by the predator, so the
predator’s energy budget grows at first. Subse-
quently, the predator’s energy budget decreases, and
at t = 831 the predator dies in all 1,000 independent
simulation runs.
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Fig. 1. Population-average energy budget of the prey
agents <r> and predator’s energy budget R vs. time ¢.

Fig. 2 shows the number of prey agents’ actions
vs. time for a peaceful strategy (rest, feed, move to
neighboring cells, breed).
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Fig. 2. The number of prey agents’ actions vs. time
for a peaceful strategy: rest (a:), feed (az2), move to
neighboring cells (as3), and breed (a4).

It can be seen that at the very initial moments,
the prey agents intensively breed and spend their en-
ergy budgets including the parent agents giving half
of their budgets to children. The analysis of the com-
puter simulation results indicates that rather quickly
the agents stop having sufficient energy for breed-
ing, and the breeding rate falls. Fig. 2 also demon-
strates that the number of “feed” actions grows in-
tensively in time and becomes predominant.

Fig. 3 shows the number of prey agents’ actions
vs. time for the defense strategy (evading, threaten-
ing, attacking the predator agent).

Figs. 2, and 3 show that at the initial moments,
the actions of the prey agents are rather chaotic.
Only after ¢ = 800, the distribution of prey agents’
actions stabilizes. Note that Figs. 2, and 3 show the
agent’s intended actions of feeding and attacking the
predator. A real attack on the predator occurs only
under certain conditions: (a) the predator must be in
the same cell as the prey agent, and (b) the predator
(like a prey agent) must also attack the prey agent.
The “feed” action also occurs under a certain condi-
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tion: when there is a food element in the cell occu-
pied by the prey agent.
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Fig. 3. The number of prey agents’ actions vs. time
for the defense strategy: evading (as), threatening (as),
and attacking the predator (a7).

Fig. 4 shows the share of the predator’s active
actions (evading threatening prey agents, hitting
prey agents, resting) for 1,000 cases.
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Fig. 4. The share of the active actions of the predators
engaged with the prey agents vs. time #: evading
threatening prey agents (b;), attacking a prey agent (b2),
resting (b3).

The number of deceased prey agents vs. time is
shown in Fig. 5.

The total number of prey agents vs. time is
shown in Fig. 6.
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Fig. 5. The number of dead prey agents vs. time 7.

Fig. 7 shows the probability of randomly select-
ing an action P,uq (¢) for the prey agents vs. time. It
can be seen that in the initial moments, the intensity
of the random search for an action is high. As time
passes, the intensity decreases. This is similar to the
“gene-mutator” model [8], which assumes that the
mutation rate can vary and be inherited. If a popula-
tion enters a new environment, where active random
search for new properties is advantageous, the mu-
tation rate increases, while during prolonged resi-
dence in a stable environment, where preservation
of already attained properties is more important, the
mutation rate decreases.
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Fig. 6. The total number of prey agents nr vs. time ¢.
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Fig. 7. The probability of randomly selecting an
action Prana (¢) for the prey agents vs. time ¢.

3.3. Parameter-Varying Simulation

We ran 3,000 such simulations and averaged the
results over 100 independent runs.

We varied the grid world size. For the basic sim-
ulation, the world size was N = 50 cells. When we
reduced it to N = 10 cells, the dependences were
similar to the ones above for N = 50. The significant
changes for N = 10 are as follows: the number of the
prey agents’ “feed” actions decreases slightly; (2)
the energy budget of the prey agents at 7= 1,000 de-
creases significantly to #(1,000) = 6.6, while at N =
50 it is #(1,000) = 10.5 (refer to Fig. 1). This can be
interpreted as follows. When the world is small, the
prey agents have less food, so their energy budgets
decrease.
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When the world size increases to N = 100 cells,
the time dependencies are similar to the N = 50 case.
The changes are as follows: (1) for 100 independent
simulation runs, in all cases the predator dies before
t = 1,746; (2) the prey agents’ energy budget at ¢ =
1,000 decreases to 7(1,000) ~ 2.3. We also observed
that at N = 100, sometimes the foo elements were
distributed unevenly: (a) there were cell chains (ap-
proximately 10 cells long) with no food at all; (b)
there were cell chains with food in each cell. Similar
results were reported in [9]. Due to such an uneven
distribution, the prey agents had difficulty finding
food and therefore had a radically reduced energy
budget compared to the N =50 case.

We also ran simulations with fewer food ele-
ments than in the main analysis (M = 25). We con-
sidered M = 20, M = 15, M = 10 (N = 50 for all
cases). At M = 20, the results only change slightly:
the prey agents’ energy budget decreases (at ¢ =
1,000 it is #(1,000) =~ 6.4) and the predator’s lifespan
changes slightly (at t = 925 the predator dies in all
100 independent simulations). At M = 15, the situa-
tion changes significantly: the prey agents’ energy
budget decreases significantly, and the predator
agent survives up to # = 3,000. The prey agents’ and
predator’s energy budgets for M = 15 are shown in
Fig. 8. At M = 10, the variations of the variables
change drastically: the predator survives until ¢ =
3,000 in all 100 independent simulations, and with
time the predator’s energy budget increases to
R(3,000) =~ 150, while the prey agents’ energy
budget decrease to 7(3,000) ~ 0.2, i.e. in this case the
predators actively feed on the prey agents, replen-
ishing their energy budgets, and suppress the “life”
of the prey agents.
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Fig. 8. Population-averaged prey agents’ energy budgets
<r> and predator energy budget R vs. time ¢. The number
of food elements is reduced to M = 15.

4. Conclusion

We created and analyzed a computer simulation
model representing a collective defense by weak
prey agents against a strong predator agent. It is
shown that a group of prey agents is able to resist a
strong predator agent. In particular, prey agents can
threaten and collectively attack the predator. By
evading threatening prey agents, and repelling their
attacks, the predator loses its energy and may die.
We also demonstrated that prey agents need a fair
amount of food to be able to defend themselves.
Given enough food, relatively weak prey agents
overwhelm a strong predator. When the prey agents’
food supply is low, the predator agent suppresses the
prey agents.

This is a part of the FNEF-2024-0001 Develop-
ment and Deployment of Trusted Al Systems based
on New Mathematical and Algorithmic Approaches
and Fast Computing Models Compatible with Do-
mestic Computer Hardware government contract
(10230321,00070-3-1.2.1).

Moaeab 000pOHBI KOJLJIEKTHBA CJIA0bIX MUPHBIX
ATCHTOB OT CHJILHOI'0 areHTa-XMIIHUKA

B.I'. Peabko

HUIL «KYPUATOBCKUN UHCTUTY T» — HUUCH, r. MockBa, Poccuiickas ®eneparnust;

vgredko@gmail.com

AnHoranus. [TocTpoeHa u u3ydeHa MOAENb B3aHMOACHCTBHS COOOIIECTBA OTHOCUTENBHO CITA0BIX MHPHBIX
areHTOB B KJIETOYHOM MHpE C CHIIBHBIM aréHTOM-XUITHUKOM. ATEHT-XHITHUK MOXKET HalaJaTh Ha MUPHBIX areHTOB,
yOuBaTh U cheaTh UX. BHyTpeHHs cucTeMa yNpaBIeHHs MUPHOTO areHTa IpeJcTaBisieT co00il HEHPOHHYIO CETb.
MmetoTest 1Be cTpaTerny MUPHBIX areHTOB: 1) 0OBIYHAs MUpPHAsI XKH3HB, 2) 000pOHA OT CHIIEHOTO areHTa-XHIIHUKa. B
IIepBOIi CTpPAaTETHH MHUPHbBIE areHThl BRIMOJIHAIOT CIEAYIOIIUE NeHCTBHA: HAXOMUTHCSA B COCTOSHMM IOKOS, TUTAThCS,
pa3MHOXaThCs, IIepeMentaThes o Mupy. Bo BTopoii cTparerun neHCTBUS MUPHBIX areHTOB TAKOBBI: YXOJ OT areHTa-
XMIIHUKA, YIPO3a areHTy-XUIIHUKY, HallaJleHHe Ha areHTa-XUIHUKA. BeIxonamMu HeHpOHHOMN ceTH SBISIOTCS CUTHABI,
ompenessone AeHCTBUS MUPHOTO areHTa. ATeHT-XUIIHHUK BBINOIHATE CIEAYIOINE NeHCTBU: HAXOAUTHCS B COCTOSI-
HHH TIOKOSI, YXOIHUTH OT YTPOXKAIOIINX MUPHBIX areHTOB, HAITJaTh Ha MAPHBIX areHToB. [loBeneHme areHTa-xuIHIKa
OTIpe/eIIIeTCSI IPOCTHIMU JIOTUIECKUMH MPaBHIIAMH. AHAIIM3 MOJEIH IPOU3BOIMICS ITyTeM KOMITBIOTEPHOTO MOJIEIIH-
poBanus. [lokazaHo, 9TO NMPU JOCTAaTOYHO €CTECTBEHHOM BBIOOpE MapaMeTpOB MOJEIH KOJUICKTUB MHPHBIX areHTOB
noOeXIaeT areHTa-XHuIIHNKA, 3 UMEHHO, C TeUCHHEM BPEMEHH Pecypc MUPHBIX areHTOB YBEPEHHO PAcTET, a pecypc
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areHTa-XUIHUKA B UTOTEe YMEHBIIACTCS 10 HYII, T.€. areHT-XUIIHUK norudaet. Takxke MpoieMOHCTPHPOBAHO, YTO I
obecreueHns cnocOOHOCTH K TaKoi 000pOHE, MUPHBIM areHTaM HY»HO JJOCTaTOYHO OO0JIbIIOE KOJHYeCTBO MHLIH. [Ipu
MaJIOM KOJIMYECTBE MU MUPHBIX areHTOB areHT-XUIHUK [OJaBIIseT MUPHBIX areHTOB.

KaroueBble cj10Ba: MUPHBIE areHTHI, arCHT-XUITHUK, 00ph0a MEXIy areHTaMu
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