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Аннотация. В работе рассматривается задача моделирования движения автомата перекоса несущих 

винтов летательных аппаратов вертолетного типа в системах виртуального окружения. Для ее решения предла-

гается подход, в котором вычисление координат составных частей механизма осуществляется без учета их ди-

намики. При реализации такого подхода был задействован метод Ньютона-Рафсона для решения систем нели-

нейных уравнений. Апробация предлагаемых в статье методов и подходов была проведена в разработанном 

комплексе виртуального окружения на примере моделирования движения виртуальной модели марсианского 

вертолета соосной схемы. Результаты апробации показали адекватность и эффективность предложенных в ста-

тье решений и их применимость для систем виртуального окружения. 
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1. Введение 

Полет винтокрылых летательных аппаратов 

осуществляется за счет подъемной силы, созда-

ваемой одним или несколькими несущими вин-

тами. При этом взлет, посадка, горизонтальный 

полет и маневрирование вертолетов обеспечива-

ется за счет автомата перекоса несущего винта. 

Автомат перекоса представляет собой механизм 

с приводом одного или нескольких двигателей, 

который изменяет угол установки лопасти винта 

(шаг винта) в зависимости от того, где лопасть 

оказывается в определенный момент времени 

при вращении винта как единого целого. 

В данной статье рассматриваются марсиан-

ские летательные аппараты вертолетного типа. 

Одна из задач для таких аппаратов состоит в обу-

чении операторов навыкам дистанционного 

управления ими с помощью специальных пуль-

тов. Однако тренировка с использованием реаль-

ных летательных аппаратов может привести к их 

поломке. Альтернативный подход заключается в 

том, чтобы проводить обучение на виртуальных 

моделях летательных аппаратов в виртуальной 

среде. Качество такого обучения непосред-

ственно зависит от точности и адекватности ма-

тематических моделей, применяемых для реали-

зации движения виртуальных летательных аппа-

ратов. Поэтому разработка методов и подходов 

моделирования движения летательных аппара-

тов вертолетного типа в системах виртуального 

окружения является важной и актуальной зада-

чей. 

Существующие методы и подходы моделиро-

вания движения летательных аппаратов верто-

летного типа [1] – [5] основаны на законах аэро-

динамики. Математическая модель динамики 

вертолета зависит от его конструкции и схемы 

расположения винтов. Например, динамика вер-

толета соосной схемы описывается дифферен-

циальными и нелинейными уравнениями отно-

сительно его координат и индуцированных ско-

ростей воздушного потока верхнего и нижнего 

винта [6]. В свою очередь, механизм автомата 

перекоса вертолета представляет собой систему 

шарнирно связанных тел, содержащую замкну-

тые кинематические цепи [7]. Один из подходов 

для моделирования динамики таких систем ос-

нован на применении метода множителей Ла-

гранжа [8], [9] с обеспечением голономных свя-

зей, накладываемых на координаты тел. В этом 

методе задача сводится к вычислению неизвест-

ных величин множителей Лагранжа (сил и мо-

ментов) на каждом шаге моделирования путем 

решения громоздкой системы линейных уравне-

ний. Для ее решения, как правило, используются 

численные итерационные методы. Проблема та-

кого подхода заключается в том, что моделиро-

вание динамики объектов в системах виртуаль-

ного окружения необходимо осуществлять в 

масштабе реального времени. Поэтому в этих 

методах число итераций меньше, чем необхо-

димо, и это приводит к тому, что в процессе мо-

делирования из-за высокой скорости вращения 

винта голономные связи механизма автомата пе-

рекоса будут нарушаться. 

В данной работе предлагается подход, осно-

ванный на кинематическом способе расчета дви-

жения механизма автомата перекоса вертолета. 

В предлагаемом подходе для вычисления коор-
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динат звеньев механизма был задействован ме-

тод Ньютона-Рафсона решения систем нелиней-

ных уравнений. Обоснование правомерности та-

кого подхода базируется на том факте, что авто-

мат перекоса обеспечивает только установку об-

щего и циклического шага винта. При этом само 

движение автомата перекоса не оказывает суще-

ственного влияния на динамику основной части 

вертолета и его аэродинамические характери-

стики. Апробация предлагаемых в статье реше-

ний была проведена в программном комплексе 

виртуального окружения VirSim [10] на примере 

моделирования движения марсианского верто-

лета с соосным расположением винтов, которая 

показала их адекватность и эффективность. 

2. Автомат перекоса 

Автомат перекоса представляет собой меха-

низм для управления углами установки лопастей 

винта. При его одновременном изменении для 

всех лопастей винта (общий шаг винта) изменя-

ется подъемная сила, что обеспечивает управле-

ние вертикальным движением вертолета. В свою 

очередь горизонтальное движение вертолета до-

стигается за счет разных углов установки лопа-

стей винта (циклический шаг винта) при их кру-

говом движении. 

 

Рис. 1. Виртуальная модель автомата перекоса 

На рис. 1 показана виртуальная модель авто-

мата перекоса несущего винта двухлопастного 

вертолета. Для данной модели механизм управ-

ляется с помощью трех электроприводов 1, уста-

новленных на корпусе летательного аппарата. 

Эти приводы воздействуют посредством тяг 5 на 

внешнюю тарелку 2, изменяя ее положение и 

углы наклона по каналам крена и тангажа. Она 

не вращается и связана с внутренней вращаю-

щейся тарелкой 3 посредством шаровой опоры 7 

(качающегося подшипника). Тяги 6 соединяют 

внутреннюю тарелку с лопастями винта 4, изме-

няя их угол установки. В установившемся состо-

янии тарелки параллельны плоскости вращения 

лопастей винта. Рассматриваемый механизм ав-

томата перекоса устроен таким образом, что об-

щий шаг винта регулируется смещением тарелок 

вдоль его оси вращения, а циклический шаг 

винта обеспечивается за счет наклона тарелок. 

3. Моделирование движения 

 автомата перекоса 

Предлагаемое решение для моделирования 

движения механизма автомата перекоса заклю-

чается в следующем. Сначала под действием 

электроприводов вычисляются углы поворотов 

тяг управления креном и тангажом, которые со-

единяют корпус летательного аппарата с внеш-

ней тарелкой автомата перекоса. Данная задача 

сводится к решению нелинейных уравнений от-

носительно расстояний между точками крепле-

ния звеньев тяг с внешней тарелкой. Затем вы-

числяются новые координаты (положение, углы 

крена и тангажа) тарелок. На последнем этапе 

определяются новые углы поворотов тяг, идущие 

к лопастям несущего винта. Для этого для каж-

дой лопасти решается система из двух нелиней-

ных уравнений относительно координат точек 

крепления тяг с внутренней тарелкой автомата 

перекоса. На выходе получаем новые углы (об-

щий и циклический) установки лопастей винта. 

Далее рассмотрим предлагаемое решение более 

подробно. 

Рис. 2. Тяга управления креном и тангажом 

3.1. Вычисление координат внешней 

тарелки автомата перекоса 
Рассмотрим тягу управления креном и танга-

жом внешней тарелки автомата перекоса (см. 

рис. 2). Она представляет собой двухзвенный ме-

ханизм, движение которого описывается с помо-

щью двух углов αi и βi, i = 1,2,3. Поворот первого 

звена механизма на угол αi осуществляется по-

средством электропривода, в то время как угол 

поворота βi второго звена является неизвестным. 

Координаты точек Pi крепления тяг с внешней 

тарелкой автомата перекоса в двумерной си-

стеме координат i i iO x z    выражаются через эти 

углы следующим образом 

 cosα cos α β π / 2xi i i i i iP l w       

 cosα sin β α ;i i i i il w    
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 sinα sin α β π / 2zi i i i i iP l w       

 sinα cos α β ,i i i i il w    

где li и wi – длины звеньев тяг. 

Рис. 3. Внешняя тарелка автомата перекоса 

Неизвестные углы βi определяются из усло-

вий, что точки крепления после поворота всех 

тяг остаются на внешней тарелке. Пусть O1XYZ 

и Oxyz системы координат внешней тарелки в 

начальном и текущем состоянии. Тогда необхо-

димо преобразовать полученные координаты то-

чек Pi к системе координат O1XYZ и обеспечить, 

чтобы расстояния между точками оставались 

неизменными (см. рис. 3). Это приводит к си-

стеме нелинейных уравнений следующего вида 
2

2

1 1 2 1 2

2
2

2 2 3 2 3

2
2

3 1 3 1 3

(β ,β ) 3 0 ;

(β ,β ) 3 0 ;

(β ,β ) 3 0 ,

f PP r

f P P r

f PP r

   



  

   


            (1) 

где r – радиус внешней тарелки. 

Для решения этой системы воспользуемся 

численным методом Ньютона-Рафсона. Этот ме-

тод является итерационным и на каждом шаге 

итерации задача (1) сводится к решению си-

стемы линейных уравнений, которая в вектор-

ной форме примет вид 
( ) ( )( )k k  J β f β , ( ) ( 1) ( )k k k  β β β ,     (2) 

где k – номер итерации,  
T

( ) ( ) ( ) ( )

1 2 3β , β , βk k k kβ , 

 
T

1 2 3, ,f f ff , J – матрица Якоби. 

Итерации с решением системы (2) продолжа-

ются до тех пор, пока не будет выполнено усло-

вие 
( ) εk β , где ε – заданное малое число. 

Далее задача сводится к тому, чтобы опреде-

лить положение и углы наклона внешней та-

релки. Положение внешней тарелки вычисля-

ется как среднее между координатами точек Pi: 

1 2 3( ) / 3z z z zz O P P P    . 

Ориентация внешней тарелки задается с по-

мощью двух последовательных поворотов на 

углы φ и θ вокруг осей x и y. В этом случае мат-

рица перехода R из системы координат Oxyz в 

систему координат O1XYZ примет вид 

1 0 0 cosθ 0 sinθ

0 cosφ sinφ 0 1 0

0 sin φ cosφ sinθ 0 cosθ

cosθ 0 sinθ

sinθsinφ cosφ cosθsinφ .

sin θcosφ sinφ cosθcosφ

  
  

    
    

 
 

  
  

R

 

Столбцы матрицы R задают орты осей си-

стемы координат Oxyz в системе координат 

O1XYZ. Согласно рис. 3, орты вычисляются как 

3 2

3 2

x

P P

P P
n , 1

1

y

PO

PO
n , 

z x y n n n . 

Тогда искомые углы выражаются через полу-

ченные орты следующим образом 

, ,φ atan2( , )y z y y n n , 
, ,θ atan2( , )z x x x n n , 

где atan2(x, y) – функция арктангенса двойного 

аргумента [11]. 

Углы наклона внутренней тарелки совпадают 

с углами наклона внешней тарелки, а ее положе-

ние вычисляется путем смещения положения 

внешней тарелки вдоль оси вращения винта на 

известную величину Δh. 

 
Рис. 4. Тяга управления лопастью винта 

3.2. Вычисление установочных углов 

лопастей винта 
Лопасти винта связаны с внутренней тарел-

кой посредством тяг. Данная конструкция (см. 

рис. 4) представляет собой двухзвенный меха-

низм, одно звено которого является лопастью 

винта. Движение рассматриваемого механизма 

описывается с помощью углов γj и χj, 1,j M , 

где M – число лопастей винта. При этом углы δj 
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задают начальные значения установочных углов 

лопастей. 

В двумерной системе координат 
j j jO x z    ко-

ординаты точек Qj крепления тяг с внутренней 

тарелкой выражаются через углы γj и χj следую-

щим образом 

   1 2cos γ δ cos π / 2 γ χxj j j j j j jQ l l        

   1 2cos γ δ sin γ + χ ;j j j j j jl l          (3) 

   

   
1 2

1 2

sin γ δ sin π / 2 γ χ

sin γ δ cos γ + χ ,

zj j j j j j j j

j j j j j j j

Q h l l

h l l

       

   
 

где l1j  и l2j – длины звеньев  механизма, hj – рас-

стояние между внутренней тарелкой и шарни-

ром лопасти в исходном состоянии.  

Так как точки Qj тяг находятся на вращаю-

щейся внутренней тарелки, то их положение 

также зависит от угла поворота винта. Эти точки 

в системе координат O1XYZ вычисляются как 

cosψ sinψj Z j x j yQ O h   n n n , 

где T(0,0,1)Z n , ψj – угол поворота точки Qj при 

вращении внутренней тарелки. 

Для вычисления координат 
xjQ  и 

zjQ  точки 

Qj преобразуются в систему координат 
j j jO x z    . 

Система уравнений (3) является нелинейной от-

носительно неизвестных углов γj и χj. Для реше-

ния этой системы воспользуемся численным ме-

тодом Ньютона-Рафсона, предварительно пред-

ставив ее в следующем виде 

 

 
4 1

2

(γ , χ ) cos γ δ

sin γ + χ 0 ;

j j j j j

j j j xj

f l

l Q

  

  
 

 

 
5 1

2

(γ , χ ) sin γ δ

cos γ + χ 0 .

j j j j j j

j j j zj

f h l

l Q

   

  
 

Тогда на каждом шаге итерации метода за-

дача сводится к решению системы линейных 

уравнений второго порядка 

( ) ( ) ( ) ( )4 4

4

( ) ( ) ( ) ( )5 5

5

γ χ (γ , χ );
γ χ

γ χ (γ , χ ) ,
γ χ

k k k k

j j j j

j j

k k k k

j j j j

j j

f f
f

f f
f

 
    

 

 
    

 

      (4) 

где k – номер итерации, 
( ) ( 1) ( )γ γ γk k k

j j j

   , 

( ) ( 1) ( )χ χ χk k k

j j j

   , 

Рис. 5. Моделирование движения автомата перекоса 

а) б) 

в) г) 
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   4

1 2sin γ δ cos γ + χ
γ

j j j j j j

j

f
l l


   


,  

   5

1 2cos γ δ sin γ + χ
γ

j j j j j j

j

f
l l


  


,

 4

2 cos γ + χ
χ

j j j

j

f
l





,  5

2 sin γ + χ
χ

j j j

j

f
l





. 

Полученная система линейных уравнений 

решается стандартным образом. Итерации вы-

полнятся до тех пор, пока не будут выполнены 

условия ( )γ εk

j   и ( )χ εk

j  . 

 На выходе моделирования движения авто-

мата перекоса получаем новые установочные 

углы лопастей γj + δj. 

4. Результаты моделирования 

Предлагаемые в статье методы и подходы для 

моделирования движения автомата перекоса ле-

тательных аппаратов вертолетного типа были ре-

ализованы в комплексе виртуального окружения 

VirSim [10], разработанном в ФГУ ФНЦ НИИСИ 

РАН. Для этого были созданы программные мо-

дули для моделирования динамики винта вирту-

альных летательных аппаратов. Эти модули 

обеспечивают расчет динамики всех электро-

приводов винта, реализацию кинематики меха-

низма автомата перекоса, а также вычисление 

подъемной силы и момента сопротивления 

винта. Апробация предложенных в статье реше-

ний проводилась на примере моделирования 

движения виртуальной модели марсианского 

вертолета соосной схемы [12], в котором два не-

сущих винта вращаются в противоположном 

направлении относительно друг друга и управ-

ляются с помощью автоматов перекоса. На рис 5 

приводятся различные состояния верхнего авто-

мата перекоса, где а) его исходное состояние, б) 

изменение общего шага лопастей, в) изменение 

циклического шага лопастей в поперечном 

направлении винта путем поворота тарелок на 

угол φ по оси тангажа, г) изменение цикличе-

ского шага лопастей в продольном направлении 

винта путем поворота тарелок на угол θ по оси 

крена. В этой модели изменение общего шага 

установки лопастей винта обеспечивает управ-

ление вертикальным движением летательного 

аппарата, в то время как изменение цикличе-

ского шага верхнего винта предназначено для 

его стабилизации, а нижнего винта – для управ-

ления его горизонтальным движением. Апроба-

ция проводилась с использованием созданной 

виртуальной модели участка поверхности Марса 

(см. рис. 6) с реализацией основных движений 

вертолета соосной схемы (его взлет, посадка и 

маневрирование в горизонтальной плоскости). 

Результаты апробации показали, что для реше-

ния систем нелинейных уравнений (2) и (4) тре-

буется не более 5 итераций и все необходимые 

вычисления для реализации динамики объектов 

укладываются в 10 мс, тем самым обеспечивая 

моделирование движения летательных аппара-

тов вертолетного типа в масштабе реального 

времени. 

Рис. 6. Моделирование движения марсианского вертолета соосной схемы 
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5. Заключение 

В работе предложены методы и подходы мо-

делирования движения механизма автомата пе-

рекоса несущих винтов виртуальных летатель-

ных аппаратов, основанные на вычислении ко-

ординат его составных частей без учета их дина-

мики. Преимущество такого подхода перед дру-

гими методами состоит в том, что он не требует 

существенных вычислительных затрат и обеспе-

чивает правильную работу механизма при вра-

щении винта с высокой скоростью. Полученные 

в статье результаты могут быть использованы в 

имитационно-тренажерных комплексах и вирту-

альных лабораториях с целью обучения операто-

ров навыкам управления летательными аппара-

тами вертолетного типа. 

Публикация выполнена в рамках государ-

ственного задания ФГУ ФНЦ НИИСИ РАН по 

теме № FNEF-2024-0002 «Математическое мо-

делирование многомасштабных динамических 

процессов и системы виртуального окружения».

  

Simulation of Swashplate Motion for Virtual 

Martian Rotorcraft Models 

E. V. Strashnov 

Abstract. The paper considers the task for rotor swashplate motion simulation of helicopter-type aircraft in 

virtual environment systems. To solve this task, it is proposed an approach in which the coordinates of mechanism 

component parts are computed without taking into account their dynamics. When implementing this approach, the 

Newton-Raphson method was used to solve systems of nonlinear equations. The approbation of methods and ap-

proaches proposed in the paper was carried out in developed virtual environment complex using the example of a virtual 

Martian coaxial helicopter model motion simulation. Approbation results showed the adequacy and effectiveness of 

solutions proposed in the paper and their applicability for virtual environment systems. 

Keywords: rotorcraft, rotor, swashplate, blade pitch, Newton–Raphson method, virtual environment 

systems 
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