

Обобщение задачи составления

многопроцессорного расписания

с прерываниями

М.Г. Фуругян1

1ФИЦ ИУ РАН, Москва, Россия, rtsccas@yandex.ru

Аннотация. Рассматривается задача составления многопроцессорного расписания для комплекса работ,

допускающих прерывания и переключения с одного процессора на другой. Предполагается, что обработка пре-

рываний и переключений требует временных издержек. Это условие переводит задачу из класса полиноми-

ально разрешимых в класс NP-трудных. Разработан алгоритм, основанный на методике В.С. Танаева составле-

ния многопроцессорного расписания без учета затрат на прерывания и переключения. Методика включает в

себя процедуру упаковки для случая, когда работы имеют общий директивный срок, а также процедуру сведе-

ния исходной задачи к потоковой для случая произвольных директивных интервалов. При этом используется

также известный псевдополиномиальный алгоритм составления допустимого многопроцессорного расписания

для непрерываемых работ с общим директивным сроком.

Ключевые слова: многопроцессорная система, директивный интервал, допустимое расписа-

ние, процедура упаковки, потоковая сеть

1. Введение

По вопросам планирования работ и составле-

ния расписаний имеется большое число публи-

каций. Отметим такие фундаментальные ра-

боты, как [1, 2]. В [1] рассматриваются различ-

ные задачи по теории расписаний как для одно-

процессорных, так и для многопроцессорных

систем. Авторы предлагают алгоритмы планиро-

вания непрерываемых работ, а также для работ,

допускающих прерывания и переключения с од-

ного процессора на другой. Большое внимание

уделено вопросам вычислительной сложности

алгоритмов. Проводится большой список NP-

трудных задач. В [2], помимо задач составления

расписаний, исследуются различные задачи дис-

кретной оптимизации.

В [3] исследуются задачи составления одно-

процессорных расписаний для непрерываемых

работ с критерием минимизации максимального

запаздывания. Автором введено понятие рассто-

яния между задачами, что позволило разрабо-

тать эффективные алгоритмы.

В [4, 5] на основе метода ветвей и границ раз-

работаны алгоритмы решения задач планирова-

ния в финансовой и экономической сферах. Эти

публикации представляют особый интерес, по-

скольку в них рассмотрены задачи с нефиксиро-

ванными параметрами, такими, как длительно-

сти выполнения работ и объемы имеющихся ре-

сурсов.

В [6, 7] рассмотрены задачи планирования

работ в многопроцессорных и многоядерных си-

стемах реального времени. В таких системах су-

ществуют жесткие временные ограничения на

выполнения работ, которые в ряде случаев со-

ставляют доли секунды. Поэтому очень важным

является составление оптимальных по быстро-

действию расписаний. Для этого авторы исполь-

зуют аппарат сетей Петри с остановкой таймера

и временные диаграммы.

В работах [1 – 7] используемые ресурсы яв-

ляются не складируемыми, т.е. такими, которые

могут использоваться многократно. К таким ре-

сурсам относятся, например, машины, станки,

приборы. В отличие от них, складируемые ре-

сурсы повторно использоваться не могут. К та-

ким ресурсам относятся, например, финансы, го-

рючие материалы, электроэнергия.

В [8, 9] исследованы задачи планирования ра-

бот в системах с неоднородным комплексом ре-

сурсов, который включает в себя как складируе-

мые, так и не складируемые ресурсы. Методика

решения таких задач основана на их сведении к

потоковым задачам в сетях специального вида.

В настоящей статье рассматривается обобще-

ние задачи составления многопроцессорного

расписания с директивными интервалами, до-

пускающего прерывания и переключения. В от-

личие от указанных выше публикаций, предпо-

лагается, что прерывания и переключения тре-

буют временных затрат. Наличие этого условия

приводит к тому, что задача переходит из класса

полиномиально разрешимых задач в класс NP-

трудных задач. Решение задачи основано на ме-

тодике, предложенной в [1] и состоящей из по-

строения сети специального вида и поиска в ней

11

максимального потока. Дополнительно исполь-

зуется псевдополиномиальный алгоритм состав-

ления расписания выполнения непрерываемых

работ с общим директивным сроком [10].

2. Постановка задачи

Для выполнения комплекса работ (заданий)

𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑛} имеется m идентичных про-

цессоров 𝑝1, 𝑝2, … , 𝑝𝑚. Каждая работа может вы-

полняться любым процессором. Для работы 𝑤𝑖

известна длительность ее выполнения 𝑡𝑖 и ди-

рективный интервал [𝑏𝑖 , 𝑓𝑖] (работа 𝑤𝑖 может

быть начата не ранее момента времени 𝑏𝑖 и

должна быть завершена не позднее момента вре-

мени 𝑓𝑖), 𝑖 = 1, 𝑛.При выполнении работ допус-

каются их прерывания и переключения с одного

процессора на другой. В отличие от [1], предпо-

лагается, что прерывание и переключение с од-

ного процессора на другой требуют дополни-

тельных временных затрат в объеме  каждого

из этих двух процессоров. А именно, если неко-

торая работа выполняется процессором 𝑝𝑙1
 и в

момент времени 𝜏1 она прерывается, то этот про-

цессор выполняет дополнительную работу в ин-

тервале [𝜏1; 𝜏1 + 𝜎]. Далее, прерванная работа

может быть возобновлена в момент времени

𝜏1 ≥ 𝜏1 + 𝜎 на некотором процессоре 𝑝𝑙2
 (воз-

можно, на том же процессоре 𝑝𝑙1
), который сна-

чала выполняет дополнительную работу в ин-

тервале [𝜏2; 𝜏2 + 𝜎], а затем прерванную работу.

Предполагается, что

 𝑡𝑖 + 2𝜎 ≤ 𝑓𝑖 − 𝑏𝑖 (1)

при всех 𝑖 = 1, 𝑛, т. е. каждая работа может быть

выполнена одним процессором в своем дирек-

тивном интервале, включая обработку одного

прерывания и одного возобновления прерванной

работы.

Не допускается параллельное выполнение

одной работы несколькими процессорами и па-

раллельное выполнение нескольких работ одним

процессором.

Расписание выполнения комплекса работ W

показывает для каждой работы, в какие моменты

времени какими процессорами она выполняется.

Допустимое расписание – это такое расписание,

при котором каждая работа полностью выполня-

ется в своем директивном интервале.

Задача состоит в том, чтобы определить, су-

ществует ли допустимое расписание выполне-

ния комплекса работ W, и построить его в случае

положительного ответа. Отметим, что в [11] был

разработан алгоритм для случая, когда директив-

ные интервалы всех работ совпадают. Там же по-

казано, что сформулированная задача является

NP-трудной даже в том случае, когда директив-

ные интервалы у всех работ совпадают.

3. Модификация алгоритма

 упаковки

Рассмотрим сначала случай, когда директив-

ные интервалы у всех работ совпадают, т.е. 𝑏𝑖 =

0, 𝑓𝑖 = 𝐹 при всех 𝑖 = 1, 𝑛. В [1] описан алгоритм

упаковки для случая, когда затраты на прерыва-

ния и переключения не учитываются. Ниже при-

водится модификация этого алгоритма для слу-

чая, когда прерывания и переключения требуют

временных издержек, как это описано в разд. 2.

В этом случае условие (1) трансформируется в

неравенство

 𝑡𝑖 + 2𝜎 ≤ 𝐹 (2)

при всех 𝑖 = 1, 𝑛.

Лемма. 1) Необходимым условием существо-

вания допустимого расписания является выпол-

нение неравенства

 ∑ 𝑡𝑖

𝑛

𝑖=1

≤ 𝑚𝐹. (3)

2) Достаточным условием существования до-

пустимого расписания является выполнение не-

равенства

 ∑ 𝑡𝑖

𝑛

𝑖=1

+ 2(𝑚 − 1)𝜎 ≤ 𝑚𝐹. (4)

Доказательство. 1) Если неравенство (3) не

выполнено, то это означает, что суммарная дли-

тельность работ W превосходит суммарное про-

цессорное время. В этом случае допустимого

расписания не существует.

2) Существование допустимого расписания

при выполнении неравенства (4) следует из опи-

санного ниже модифицированного алгоритма

упаковки. Лемма доказана.

Модифицированный алгоритм упаковки

Шаг 1. Выполнить работу 𝑤1 на процессоре

𝑝1 без прерываний в интервале [𝑜; 𝑡1]. Положить

𝜏 = 𝑡2, 𝑖 = 1, 𝑗 = 1.

 Шаг 2. Положить 𝑖 = 𝑖 + 1. Если 𝑖 ≤ 𝑛, то

перейти на шаг 3; в противном случае перейти

на шаг 8.

Шаг 3. Если 𝜏 + 𝑡𝑖 ≤ 𝐹, то перейти на шаг 4.

Если 𝜏 + 𝑡𝑖 = 𝐹, то перейти на шаг 5. Если 𝜏 +
𝑡𝑖 > 𝐹 и 𝜏 + 𝜎 ≥ 𝐹, то перейти на шаг 7.

Шаг 4 Выполнять работу 𝑤𝑖 на процессоре 𝑝𝑗

в интервале [𝜏; 𝜏 + 𝑡𝑖]. Перейти на шаг 2.

Шаг 5. Выполнять работу 𝑤𝑖 на процессоре

𝑝𝑗 в интервале [𝜏; 𝜏 + 𝑡𝑖]. Положить 𝑗 = 𝑗 + 1.

Перейти на шаг 2.

Шаг 6. Выполнять работу 𝑤𝑖 на процессоре

𝑝𝑗+1 в интервале [0; 𝑡𝑖 − (𝐹 − 𝜏 + 𝜎)]. В момент

12

𝑡𝑖 − (𝐹 − 𝜏 + 𝜎) выполнение работы 𝑤𝑖 преры-

вается. Далее, в интервале [𝑡𝑖 − (𝐹 − 𝜏 −
𝜎); 𝑡𝑖 − (𝐹 − 𝜏 − 𝜎) + 𝜎] процессор 𝑝𝑗+1 выпол-

няет дополнительную работу по обработке пре-

рывания и переключения работы 𝑤𝑖 . Далее, в ин-

тервале [𝜏; 𝜏 + 𝜎] процессор 𝑝𝑗 снова выполняет

дополнительную работу по обработке прерыва-

ния и переключения работы 𝑤𝑖 . После чего про-

цессор 𝑝𝑗 возобновляет выполнение работы 𝑤𝑖 в

интервале [𝜏 + 𝜎; 𝐹]. Положить 𝑗 = 𝑗 + 1. Пе-

рейти на шаг 2.

Шаг 7. Выполнять работу 𝑤𝑖 без прерываний

на процессоре 𝑝𝑗+1 в интервале [0; 𝑡𝑖]. 𝑗 = 𝑗 + 1.

Перейти на шаг 2.

Шаг 8. Расписание построено. Завершение

алгоритма.

Дадим некоторые пояснения к описанному

алгоритму. Выполнение работы 𝑤1 на процес-

соре 𝑝1 без прерываний и переключений (шаг 1)

возможно в силу условия (2). На шаге 2 выпол-

няется проверка, все ли работы назначены на

процессоры. На шаге 3 выполняется проверка

возможности исполнения очередной работы на

текущем процессоре. На шаге 4 и шаге 5 очеред-

ная работа полностью выполняется на текущем

процессоре, если она может завершиться не

позднее момента времени F. В противном случае

возможны два варианта. В первом варианте она

сначала выполняется на следующем процессоре,

а завершается на текущем процессоре (шаг 6).

При этом учитываются затраты на прерывания и

переключения. Во втором варианте текущая ра-

бота полностью выполняется на следующем

процессоре без прерываний и переключений

(шаг 7). Шаг 8 завершает алгоритм.

Отметим, что в результате работы писанного

алгоритма число прерываний и переключений не

более 𝑚 − 1, а продолжительность их обработки

не превосходит 2(𝑚 − 1)𝜎. Поэтому если усло-

вие (2) будет выполнено, то это гарантирует су-

ществование допустимого расписания. Вычис-

лительная сложность описанного алгоритма со-

ставляет 𝑂(𝑛).

4. Сокращение числа

прерываний и переключений

для случая одинаковых

директивных интервалов

В предыдущем разделе предполагалось, что

выполняется неравенство (4), которое гаранти-

рует существование допустимого расписания в

случае общего директивного срока у всех работ.

В настоящем разделе будем предполагать, что

неравенство (4) не выполняется, т.е.

 ∑ 𝑡𝑖

𝑛

𝑖=1

+ 2(𝑚 − 1)𝜎 > 𝑚𝐹 (5)

а неравенство (3) выполняется, т.к. оно является

необходимым условием существования допу-

стимого расписания.

Упорядочим работы по не убыванию их дли-

тельностей, т.е. будем предполагать, что 𝑡1 ≤
𝑡2 ≤ ⋯ ≤ 𝑡𝑛, Предлагаемый алгоритм заключа-

ется в том, чтобы сократить число прерываний и

переключений. Для этого множество процессо-

ров разбивается на два подмножества: 𝑃1 =
{𝑝1, … , 𝑝𝑘} и 𝑃2 = {𝑝𝐾+1, … , 𝑝𝑚}. Используя алго-

ритм, описанный в [10]. Построим допустимое

расписание без прерываний и переключений на

процессорах 𝑃1 для некоторого подмножества

работ 𝑊1⊆𝑊. Это расписание получается путем

последовательного выбора работ из 𝑊 и постро-

ения точек в k-мерном кубе с ребром длины F.

Вычислительная сложность этого алгоритма

𝑂(𝑘𝑇𝑘). Если для работ 𝑊2 = 𝑊\𝑊1 и 𝑚 − 𝑘

процессоров выполняется условие существова-

ния допустимого расписания, т.е. неравенство

 ∑ 𝒕𝒊 + 𝟐(𝒎 − 𝒌 − 𝟏)𝝈

𝒊𝝐𝑾𝟐

≤ (𝒎 − 𝒌)𝑭, (𝟔)

то с помощью модифицированного алгоритма

упаковки построим допустимое расписание для

𝑊2. Объединяя его с ранее построенным распи-

санием для 𝑊1, построим окончательное допу-

стимое расписание для 𝑊. Если же неравенство

(6) не выполняется, то число k следует увеличить

на одну единицу. Таким образом, алгоритм вы-

глядит следующим образом.

Шаг 1. Положить 𝑘 = 1.

Шаг 2. Построить допустимое расписание

без прерываний и переключений на процессорах

𝑃1. Пусть 𝑊1 – множество работ, вошедшее в это

расписание.

Шаг 3. Если выполнено неравенство (6), то

построить для 𝑊2 расписание на процессорах 𝑃2

с прерываниями и переключениями; завершение

алгоритма. Если неравенство (6) не выполнено,

то перейти на шаг 4.

Шаг 4. Если 𝑘 = 𝑚, то решение не найдено;

завершение алгоритма. Если 𝑘 < 𝑚, то положить

𝑘 = 𝑘 + 1 и перейти на шаг 2.

Вычислительная сложность описанного ал-

горитма 𝑂(𝑚(𝑇𝑚 + 𝑛)).

5. Произвольные директивные

интервалы

Перейдем к рассмотрению случая произволь-

ных директивных интервалов. Сначала приве-

дем краткое описание алгоритма, предложен-

ного в [1] в предположении отсутствия издержек

13

на обработку прерываний и переключений.

Пусть 𝑦0 < 𝑦1 < ⋯ < 𝑦𝑝 – все различные

значения 𝑏𝑖 , 𝑓𝑖, 𝑖 = 1, 𝑛; 𝐼𝑗 = [𝑦𝑗−1; 𝑦𝑗], 𝛿𝑗 = 𝑦𝑗 −

 𝑦𝑗−1, 𝑗 = 1, 𝑝. Определим потоковую сеть 𝐺 =

(𝑉, 𝐴), V – множество вершин, A – множество

ориентированных дуг; 𝑉 = {𝑢, 𝑣, 𝐼𝑗 , 𝑤𝑖}, u – ис-

точник, v – сток, 𝐴 = {(𝑢, 𝐼𝑗), (𝐼𝑗 , 𝑤𝑖), (𝑤𝑖 , 𝑣)}, 𝑗 =

1, 𝑝, 𝑖 = 1, 𝑛. Дуга (𝐼𝑗 , 𝑤𝑖) включается в A, если

𝐼𝑗[𝑏𝑖; 𝑓𝑖]. Пропускные способности U дуг опре-

деляются следующим образом: 𝑈(𝑢, 𝐼𝑗) = 𝑚𝛿𝑗,

𝑈(𝐼𝑗 , 𝑤𝑖) = 𝛿𝑗, 𝑈(𝑤𝑖 , 𝑣) = 𝑡𝑖. В [1] доказано, что

допустимое расписание существует в том и

только том случае, когда в сети G существует по-

ток 𝑔, для которого 𝑔(𝑤𝑖 , 𝑣) = 𝑡𝑖 при всех 𝑖 =

1, 𝑛. Если такой поток существует и 𝑔(𝐼𝑗 , 𝑤𝑖) >

0, то работе 𝑤𝑖 в интервале 𝐼𝑗 выделяется

𝑔(𝐼𝑗 , 𝑤𝑖) единиц процессорного времени. Распи-

сание для каждого интервала 𝐼𝑗 строится с помо-

щью модифицированного алгоритма упаковки,

описанного в разделах 3, 4.

6. Сокращение числа

 прерываний и переключений

для случая произвольных

директивных интервалов

Как следует из разд. 4, прерывания и пере-

ключения, помимо возникающих внутри каж-

дого интервала 𝐼𝑗, 𝑗 = 1, 𝑝, возможны и на стыках

интервалов 𝐼𝑗 и 𝐼𝑗+1, 𝑗 = 1, 𝑝 − 1. В этом разделе

будем исследовать вопрос о сокращении числа

таких прерываний и переключений.

Как следует из разд. 2, 3, расписание внутри

каждого интервала 𝐼𝑗, 𝑗 = 1, 𝑝, может быть пред-

ставлено в виде матрицы ‖𝑤𝑘𝑖𝑟

𝑗
‖, 𝑘 = 1, 𝑚, 1 ≤

𝑟 ≤ 𝑛. Здесь 𝑤𝑘𝑖𝑟

𝑗
 – работа 𝑤𝑖𝑟

, выполняемая в

интервале 𝐼𝑗 процессором 𝑝𝑘. Кроме того, при

𝑘 = 1, 𝑘(𝑗), 𝑘(𝑗) ≤ 𝑚, работы выполняются без

прерываний и переключений.

Предлагаемый алгоритм состоит в следую-

щем. Рассмотрим пару интервалов 𝐼𝑗 и 𝐼𝑗+1, 𝑗 =

1, 𝑝 − 1. Предположим, что 𝑤1𝑖1

𝑗
= 𝑤𝑘2𝑖2

𝑗+1
 при не-

которых 𝑖1, 𝑖2, 1 ≤ 𝑘2 ≤ 𝑘(𝑗 + 1). Тогда меняем

местами строки 1 и 𝑘2 в матрице ‖𝑤𝑘𝑖𝑟

𝑗+1
‖. Далее,

работу 𝑤1𝑖1

𝑗
 выполняем в конце интервала 𝐼𝑗, а

работу 𝑤𝑘2𝑖2

𝑗+1
 – в начале интервала 𝐼𝑗+1. В этом

случае работа 𝑤1𝑖1

𝑗
 будет выполняться без пре-

рываний и переключений в пределах интервалов

𝐼𝑗 и 𝐼𝑗+1.

Далее, следует рассмотреть элементы 𝑤1𝑖2

𝑗
 и

 𝑤𝑘𝑟𝑖𝑟

𝑗+1
 при 2 ≤ 𝑘2 ≤ 𝑘(𝑗 + 1) и выполнять дей-

ствия аналогичным образом.

Вычислительная сложность описанной про-

цедуры составляет 𝑂(𝑛2𝑝) или 𝑂(𝑛3).

7. Заключение

Исследована задача составления многопро-

цессорного расписания для комплекса работ, до-

пускающих прерывания и переключения с од-

ного процессора на другой. Предполагается, что

обработка прерываний и переключений требует

временных издержек, в следствие чего задача яв-

ляется NP-трудной. Разработанный алгоритм ос-

нован на методике В.С. Танаева составления

многопроцессорного расписания без учета за-

трат на прерывания и переключения. Алгоритм

включает в себя: процедуру упаковки для слу-

чая, когда работы имеют общий директивный

срок, процедуру сведения исходной задачи к по-

токовой для случая произвольных директивных

интервалов, псевдополиномиальный алгоритм

составления допустимого многопроцессорного

расписания для непрерываемых работ с общим

директивным сроком. Для отдельных частей ал-

горитма получены оценки вычислительной

сложности.

Generalization of the Problem of Creating a

Multiprocessor Schedule with Interrupts

Meran Furugyan

Abstract. We consider the problem of creating a multiprocessor schedule for a set of jobs that allow interrup-

tions and switching from one processor to another. It is assumed that processing interrupts and switches requires time

overhead. This condition transfers the problem from the class of polynomially solvable to the class of NP-hard ones.

An algorithm has been developed based on the methodology of V.S. Tanaev for compiling a multiprocessor schedule

without taking into account the costs of interruptions and switching. The technique includes a packing procedure for

the case when jobs have a common deadline, as well as a procedure for reducing the original problem to a network

flow problem for the case of arbitrary deadlines. In this case, the well-known pseudo-polynomial algorithm for creating

an admissible multiprocessor schedule for continuous jobs with a common deadline is also used.

14

Keywords: multiprocessor system, admissible schedule, directive interval, packing procedure, flow

network

Литература

1. Танаев В.С., Гордон В.С., Шафранский Я.М. Теория расписаний. Одностадийныесистемы. М.:

Наука, 1984, 383 с.

2. Brucker P. Scheduling Algorithms. Heidelberg: Springer, 2007, 378 с.

3. Лазарев А.А. Теория расписаний. Методы и алгоритмы. –М.: ИПУ РАН, 2019,407 с.

4. А.В. Мищенко, П.С. Кошелев. Оптимизация управления работами логистического проекта в

условиях неопределенности // Известия РАН. Теория и системы управления. (2021), № 4, 123-134.

5. М.А. Горский, А.В. Мищенко, Л.Г. Нестерович, М.А. Халиков. Некоторые модификации цело-

численных оптимизационных задач с учетом неопределенности и риска // Известия РАН. Теория и

системы управления. (2022), № 5, 106-117.

6.А.Б. Глонина, В.В. Балашов. О корректности моделирования модульных вычислительных си-

стем реального времени с помощью сетей временных автоматов // Моделирование и анализ инфор-

мационных систем. (2018), Т. 25, № 2, 174 – 192.

7. А.Б. Глонина. Инструментальная система проверки выполнения ограничений реального вре-

мени для конфигураций модульных вычислительных систем // Вестн. МГУ. Сер. 15. Вычисл. мате-

матика и кибернетика. (2020), № 3, 16 – 29.

8. М.Г. Фуругян. Планирование вычислений в многопроцессорных АСУ реального времени с до-

полнительным ресурсом //Автоматика и телемеханика. (2015), №3, 144 – 150.

9. М.Г. Фуругян. Составление расписаний в многопроцессорных системах с несколькими допол-

нительными ресурсами // Известия РАН. Теория и системы управления. (2017), № 2, 57 – 66.

10. М.Г. Фуругян. Некоторые алгоритмы решения минимаксной задачи составления многопро-

цессорного расписания // Известия РАН. Теория и системы управления. (2014), №2, 50 - 56.

11. М.Г. Фуругян. Составление расписаний в многопроцессорной системе с учетом затрат на пре-

рывания // В Сб. Математическое и компьютерное моделирование сложных систем: теоретические

и прикладные аспекты. Труды НИИСИ РАН. Т. 6, № 2, 57 – 61.

