

О некоторых простых способах

синхронизации параллельных программ

А.А. Бурцев1

1ФГУ ФНЦ НИИСИ РАН, Москва, Россия, burtsev@niisi.msk.ru

Аннотация. Статья посвящена описанию простых способов синхронизации двух параллельных про-

грамм, исполняемых на разных вычислительных ядрах одной компьютерной установки, имеющих доступ к

общей памяти. Описываемые способы взаимодействия программ можно обеспечить на основе обычных

средств, имеющихся почти в каждом языке программирования. И для их реализации не требуется применять

какие-либо особые процессорные команды или вызовы специальных функций операционной системы.

Ключевые слова: многоядерные микропроцессоры, способы синхронизации и взаимодей-

ствия параллельных программ, рандеву.

1. Введение

Современные высокопроизводительные си-

стемы, как правило, имеют в своём составе не

один, а несколько микропроцессоров [1], сов-

местно работающих с общей памятью. Это поз-

воляет повысить общую производительность

компьютерной установки, так как обеспечива-

ется возможность запускать на ней не одну, а

сразу несколько компьютерных программ, кото-

рые будут исполняться на ней в одно и то же

время, т.е. параллельно.

Но если программы, параллельно исполняе-

мые на разных микропроцессорных ядрах, не яв-

ляются независимыми, а как-то связаны между

собой и призваны вместе решать одну общую за-

дачу, то исполнение таких программ необходимо

тщательно синхронизировать, чтобы обеспечить

их согласованную работу относительно друг

друга.

Для обеспечения синхронизации параллель-

ных программ предлагаются разнообразные

средства: семафоры, сигналы, почтовые ящики,

мьютексы [2-4]. Такие средства обеспечиваются,

как правило, вызовами особых функций опера-

ционной системы или специализированной биб-

лиотеки. А для их эффективной реализации даже

используются специальные команды процессора

(test-and-set [5], LL/SC [6]), обеспечивающие ис-

ключительный кратковременный монопольный

доступ к выделенным позициям памяти.

Однако, в некоторых случаях применять за-

готовленный арсенал средств синхронизации не

представляется возможным или целесообраз-

ным. Например, при разработке программы, ко-

торая должна будет функционировать на “голой”

машине, не оснащённой какой-либо ОС, и/или

не имеет возможности использовать специали-

зированные команды доступа к памяти.

Типичным примером такой программы мо-

жет служить тестовая программа, проверяющая

работу подключённых к компьютеру разнооб-

разных периферийных устройств. Подобные те-

стовые программы должны уметь функциониро-

вать ещё до стадии загрузки какой-либо опера-

ционной системы. Обычно они должны также

удовлетворять ещё и жёстким ограничениям по

размеру занимаемой памяти, поэтому при их

разработке приходится минимизировать исполь-

зование стандартных библиотек.

Воспользоваться библиотечными функци-

ями, приготовленными для обеспечения синхро-

низации, не всегда удаётся ещё по одной при-

чине. Как правило, эти функции содержат в себе

цикл ожидания отклика от той программы-парт-

нёра, с которой требуется наладить взаимодей-

ствие. Но если такого отклика не последует, то

вызванная функция «намертво» застопорит ис-

полнение программы, её вызвавшей. Что как раз

таки неприемлемо для функционирования особо

критичных программ.

Так, например, тестовые программы, работа-

ющие с периферийными устройствами, должны

уметь всегда корректно завершаться, невзирая

ни на какие исключительные события. Будь то

«зависание» устройства по причине его сбоя или

критической ошибки, возникшей при передаче

очередной порции данных.

Поэтому при разработке такого рода про-

граммы желательно обеспечивать синхрониза-

цию работы отдельных её программных компо-

нент, призванных исполняться на разных микро-

процессорных ядрах, используя лишь обычные

средства традиционного языка программирова-

ния высокого уровня.

Далее покажем, как можно обеспечить син-

хронизацию двух программ, запускаемых на раз-

ных ядрах микропроцессорной системы, ис-

пользуя обычные возможности языка Си.

mailto:burtsev@niisi.msk.ru

16

2. Приёмы синхронизации для

двух параллельных программ

Для полноценного взаимодействия двух про-

грамм, имеющих доступ к общей памяти, доста-

точно обеспечить им средства исключительного

доступа к совместно используемым критиче-

ским ресурсам, которые бы не допускали взаим-

ных блокировок. Требуется также обеспечить

примитивные средства, которые позволили бы

программам регулировать порядок выполнения

своих действий относительно связанных с ними

действий другого партнёра.

2.1. Критические секции
Для обеспечения взаимно исключительного

доступа к критическому ресурсу со стороны

двух параллельных программ можно применять

известный алгоритм Деккера. Его структуриро-

ванный вариант, предложенный Дейкстрой, по-

дробно излагается, например, в [4, с.13].

Представим здесь вариант этого алгоритма

на языке Си, оформив в виде функций основные

его операции: инициализации, входа в критиче-

скую секцию и выхода из неё для программ каж-

дого ядра по отдельности:

int z0,z1; //флажки запросов ресурса

int pr; // кому разрешается захватить ресурс
void Init(void) {z0=0;z1=0;pr=0}

void Ent0(void)// вход для программы 0-го ядра

{ z0=1;pr=1; while(z1&&(pr==1); }

void Fin0(void){z0=0};//выход для 0-го ядра

void Ent1(void)// вход для программы 1-го ядра

{ z1=1;pr=0; while(z0&&(pr==0); }

void Fin1(void){z1=0};//выход для 1-го ядра

Предполагается, что каждая программа со-

блюдает определённые правила при доступе к

критическому ресурсу. Это значит, что про-

грамма 0-го ядра при входе в критическую сек-

цию вызывает функцию Ent0(), а при выходе из

неё − функцию Fin0(). А программа 1-го ядра

вызывает соответственно функцию Ent1() при

входе и функцию Fin1() при выходе из своей

критической секции. И, конечно же, перед ис-

пользованием критического ресурса сначала вы-

зыватся (из любого ядра) операция инициализа-

ции Init().

2.2. Флажки готовности
Допустим, на разных ядрах параллельно ис-

полняются две программы: A на 0-м ядре и B на

1-ом ядре. И каждая из них должна выполнить

два блока действий: A1, A2 и B1, B2. Но при

этом требуется обеспечить, чтобы каждая из них

начала исполнять свой второй блок действий

только после того, как другая программа закон-

чила исполнение своего первого блока.

В этом случае требуется организовать для

этих двух программ такой вид синхронизации,

который давно применяется при взаимодействии

программ-драйверов с периферийным устрой-

ством. Выполнив свою часть работы, устройство

сообщает об этом установкой флажка готовно-

сти − определённого бита в регистре состояния.

А программа-драйвер приостанавливается в

цикле ожидания, пока не обнаружит, что требуе-

мый флажок установлен.

Позаимствуем такой приём для обеспечения

требуемой синхронизации двух параллельных

программ. Пусть каждая из них, выполнив свою

первую часть работ, устанавливает свой флажок

готовности, а затем дожидается установки

флажка готовности другой программы перед

тем, как приступить ко второй части своей ра-

боты. Приготовим для такой синхронизации со-

ответствующие функции на языке Си:

int f0,f1; //флажки готовности программ
void Init0(void) {f0=0;}

void Init1(void) {f1=0;}

void Wait0(void)// ожидание для 0-го ядра

{ f0=1; while(f1==0); }

void Wait1(void)// ожидание для 1-го ядра

{ f1=1; while(f0==0); }

Теперь, чтобы обеспечить требуемую син-

хронизацию, программам 0-го и 1-го ядра сле-

дует соблюдать такой порядок действий:

 Init(); // предварительная инициализация

// схема для программы 0-го ядра
 Init0();... A1; Wait0(); A2;

// схема для программы 1-го ядра
 Init1();... B1; Wait1(); B2;

2.3. Точки встречи
Пусть запускаемые на разных ядрах про-

граммы A и B должны исполнить последова-

тельности из нескольких действий:

 A1; A2; ... An; // для программы 0-го ядра

 B1; B2; ... Bn; // для программы 1-го ядра

так, чтобы очередное действие Aj программы 0-

го ядра совпадало по времени с очередным дей-

ствием Bj программы 1-го ядра (j=1,2,…,n). Это

значит, что для программ A и B нужно обеспе-

чить такую синхронизацию, чтобы пары дей-

ствий Ai и Bi исполнялись бы параллельно:

 A1||B1; A2||B2; ... An||Bn;

Для этого организуем в этих программах

своеобразные точки встречи, так называемые

рандеву. В таких точках одна программа должна

дождаться, когда на свою точку встречи подой-

дёт другая программа, и только после этого они

обе смогут продолжать свою дальнейшую ра-

боту. Если бы у них предполагалась только одна

точка встречи, то для её организации можно

было применить описанное ранее решение с

флажками готовности.

17

Но для поставленной здесь задачи синхрони-

зации таких точек встреч у этих двух программ

может быть много (n). Их потребуется расста-

вить в этих программах перед каждым дей-

ствием Aj и Bj, исполнение которых должно

начинаться одновременно.

Способ синхронизации с ожиданием флаж-

ков готовности распространим на случай не од-

ной, а нескольких точек встречи. Для этого вме-

сто флажков, принимавших только два значения

0 и 1, будем использовать счётчики состояний,

которые будут принимать значения от 0 до n. У

каждой программы будет свой счётчик состоя-

ния, которым она фактически будет сообщать,

какую часть назначенной ей работы она уже ис-

полнила.

Будем полагать, что установкой значения j в

переменную s0, представляющую счётчик со-

стояния 0-го ядра, программа A, исполняемая на

0-ом ядре, будет сообщать, что она уже испол-

нила все предыдущие действия и готова присту-

пить к выполнению действия Aj. Теперь ей необ-

ходимо дождаться момента, когда программа B

1-го ядра сообщит, в свою очередь, о готовности

к исполнению действия Bj, установив в пере-

менной s1 своего счётчика состояния такое же

значение j.

Пронумеруем все возможные точки встречи

(от 1 до n). И выразим описанное правило пове-

дения программ в точке встречи в виде функций

с параметром, задающим номер встречи:

int s0,s1; // счётчики состояний программ
void Init0(void) {s0=0;}

void Init1(void) {s1=0;}

void Randevu0(int j)// рандеву для 0-го ядра
{ s0=j; while(s1!=j); }

void Randevu1(int j)// рандеву для 1-го ядра
{ s1=j; while(s0!=j); }

И покажем схематично, как следует соста-

вить программы A и B, чтобы обеспечить им

требуемую синхронизацию действий:
#define R0(j) Randevu0(j)

#define R1(j) Randevu1(j)

// схема программы A 0-го ядра:
 Init0();
 R0(1);A1; R0(2);A2; ... R0(n);An;

// схема программы B 1-го ядра:
 Init1();
 R1(1);B1; R1(2);B2; ... R1(n);Bn;

Заметим, что во всех этих операциях испол-

нение программы задерживается в цикле ожида-

ния. Но это непроизводительное ожидание

вполне допустимо для подобного рода про-

грамм. Ведь в такой ситуации нет необходимо-

сти переключать программу на исполнение ка-

кой-либо другой работы или вообще передавать

занимаемый ею процессор какой-то ещё другой

программе. И это как раз характеризует особен-

ность рассмотренных средств синхронизации.

3. Схема организации встречи

для нескольких программ

Представленные здесь простые приёмы син-

хронизации позволяют согласовать совместную

работу двух параллельных программ, которые

исполнятся на разных процессорных ядрах, но

имеют возможность взаимодействовать через

общую память. Напрашивается вопрос: а можно

ли такие приёмы применить для организации

взаимодействия более двух программ?

Прежде, чем ответить на него, заметим, что

реализация этих приёмов синхронизации, в ос-

новном, опирается на важнейший принцип: из-

менять значение каждой совместно используе-

мой общей переменной имеет право только одна

программа. Только при соблюдении такого прин-

ципа можно ухитриться применить описанные

здесь приёмы для взаимодействия нескольких

программ.

Покажем схематично, как можно было бы

обеспечить организацию встречи (рандеву) для

более двух программ. Пусть количество таких

программ будет m (m>2), и каждая из них испол-

няется на одном из m микропроцессорных ядер,

имеющих доступ к общей памяти.

Для взаимодействия параллельных программ

в точках встречи будем использовать общий мас-

сив переменных s[m], представляющих счёт-

чики состояний этих программ. Будем полагать,

что k-ый элемент этого массива s[k] характери-

зует состояние программы на k-ом ядре. И

только программа, исполняемая на k-ом ядре,

имеет право изменять его значение. Остальные

программы могут лишь читать это значение.

Представим процедуру рандеву для обеспе-

чения такой «многосторонней» встречи в j-ой

точке, которая будет вызываться k-ом ядром:

int s[m]; // счётчики состояний программ

void Init(int k) {s[k]=0;}// инициализация

//рандеву для программы k-го ядра в j-ой т.встречи
void Randevu(int k, int j)

{ int i,f;

 s[k]=j; // отметимся, что пришли на встречу

// дождёмся, когда все придут на j-ую точку встречи
 do{ f=1; i=0;
 while(f&&(i<m)){f=(s[i]==j);i++;}

 }while(f==0);//f=1,если все пришли на встречу
}//Randevu

И покажем схематично, как должна быть по-

строена программа, запускаемая на k-ом ядре

для выполнения последовательности действий

P1, P2, ... Pn параллельно с аналогичными дей-

ствиями программ других ядер:
#define Rk(j) Randevu(k,j)

// схема программы P k-го ядра:
Init(k);Rk(1);P1;Rk(2);P2;...Rk(n);Pn;

18

4. Синхронизация программ с

учётом аварийного завершения

Все представленные выше приёмы синхро-

низации страдают серьёзным недостатком: в них

не предусмотрены действия на случай возникно-

вения чрезвычайных ситуаций. Если одна из па-

раллельных программ не сможет по какой-либо

причине продолжить работу, то взаимодейству-

ющая с ней другая программа «зависнет» в од-

ном из циклов, в которых она ожидает отклика

от неё, а значит, не сможет даже корректно завер-

шить своё функционирование.

Попробуем исправить приведённые ранее ал-

горитмы синхронизации, чтобы избавиться от

этого недостатка. Продемонстрируем, какие для

этого следует внести поправки на примере орга-

низации точек встречи для синхронизации двух

программ (см. п. 2.3).

Будем полагать, что выполняя каждое дей-

ствие из последовательности A1, A2, … An, про-

грамма A 0-го ядра регулярно проверяет, не слу-

чилась ли какая-либо чрезвычайная ситуация,

возникновение которой препятствует её даль-

нейшему нормальному функционированию. И в

случае возникновения такой ситуации про-

грамма A прекращает свою деятельность, вы-

полняя завершающий блок действий Ax, но пе-

ред своим завершением сообщает об этом дру-

гой программе так, чтобы она могла тоже отреа-

гировать на возникшую ситуацию.

Известно, что когда подобная ситуация воз-

никает при взаимодействии управляющей про-

граммы (драйвера) с периферийным устрой-

ством, то устройство сообщает о своём сбое

установкой особого флажка ошибки (бита в ре-

гистре состояния). Позаимствуем этот приём и

будем устанавливать флажок аварийного завер-

шения программы A. А от программы B потре-

буем, чтобы она прекращала свой цикл ожида-

ния встречи, если этот флажок взведён.

Аналогичный флажок будем устанавливать и

при аварийном завершении программы B, а про-

грамма A соответственно должна будет прекра-

щать цикл ожидания встречи, если он будет взве-

дён. Выразим эти действия с флажками, скоррек-

тировав соответствующие алгоритмы:

int Abort0,Abort1;//флажки авар.завершения

int s0,s1; // счётчики состояний программ
void Init0(void){ s0=0; Abort0=0; }

void Init1(void){ s1=0; Abort1=0; }

void Randevu0(int j){ s0=j;

 while(s1!=j) if(Abort1) break; }

void Randevu1(int j){ s1=j;

 while(s0!=j) if(Abort0) break; }

Предусмотрим также проверку на необходи-

мость экстренного завершения программы на

случай, когда рандеву прекращено без получе-

ния ожидаемого отклика от партнёра:
#define R0(j) { Randevu0(j);\

 if Abort1 { Abort0=1; Ax; exit(1); }

#define R1(j) { Randevu1(j);\

 if Abort0 { Abort1=1; Bx; exit(1); }

// схема блока действий Aj! программы 0-го ядра:
{ Aj;if(ошибка){Abort0=1;Ax;exit(1);}

// схема программы A 0-го ядра: Init0();
 R0(1);A1!; R0(2);A2!; ... R0(n);An!;

// схема блока действий Bj! программы 1-го ядра:
{ Bj;if(ошибка){Abort1=1;Bx;exit(1);}

// схема программы B 1-го ядра: Init1();

 R1(1);B1!; R1(2);B2!; ... R1(n);Bn!;

Теперь в случае возникновения каких-либо

аномальных ситуаций каждая из программ кор-

ректно завершит работу, выполнив свой заклю-

чительный блок действий и сообщив об этом

другой программе.

5. Примеры взаимодействия

двух параллельных программ

Описанные приёмы синхронизации двух па-

раллельных программ были применены при раз-

работке некоторых программ совместного тести-

рования периферийных устройств, которые

предназначались для запуска на двух разных яд-

рах микропроцессорной системы. Продемон-

стрируем их применение на примерах двух те-

стовых программ, проверяющих правильность

функционирования контроллеров Ethernet и

DMA в многоядерной микропроцессорной си-

стеме MIPS-архитектуры.

5.1. Тест контроллера Ethernet на

двух микропроцессорных ядрах
Тестовая программа состоит из двух проце-

дур, каждая из которых запускается на отдель-

ном ядре. Одна процедура ведёт себя как отпра-

витель пакетов, а другая – как получатель паке-

тов, прогоняемых по внутренней петле одного и

того же Ethernet-контроллера.

Процедура-отправитель подготавливает па-

кеты данных для передачи, создаёт кольцо де-

скрипторов передатчика, запускает передатчик в

работу, после чего входит в цикл передачи паке-

тов. Процедура-получатель очищает (заполняет

пустыми данными) места памяти, куда предпо-

лагается заносить принимаемые пакеты данных,

создаёт кольцо дескрипторов приёмника, запус-

кает работу приёмника контроллера и затем ис-

полняет цикл приёма пакетов.

В самом начале процедура-получатель ини-

циализирует работу контроллера. Каждая из

процедур после отправки или приёма очеред-

ного пакета проверяет, не было ли зафиксиро-

вано каких-либо ошибок при их передаче. А

также отслеживает временной интервал (тай-

19

маут), отведённый для передачи, а при его исте-

чении сигнализирует об ошибке. После приёма

каждого пакета процедура-получатель дополни-

тельно проверяет правильность его приёма-пе-

редачи, поэлементно сравнивая массивы приня-

тых данных с теми, которые были отправлены.

Описанные действия исполняются этими

процедурами параллельно на двух разных про-

цессорах: процедура-получатель запускается на

0-ом ядре, а процедура-отправитель – на 1-ом

ядре. Но выполняться они должны согласованно,

т.е. в определённом порядке относительно друг

друга, и поэтому процессы их выполнения на

разных ядрах требуется определённым образом

синхронизовать.

Для этого в этих процедурах предусмотрены

так называемые точки встречи (рандеву). Дойдя

до очередной точки встречи, процедура одного

ядра должна дождаться момента, когда проце-

дура другого ядра тоже подойдёт к соответству-

ющей точке встречи, после чего каждая из про-

цедур может продолжать свои дальнейшие дей-

ствия на своём ядре, пока не дойдёт до конца или

до следующей точки встречи.

В каждой процедуре предусмотрено две

точки встречи в начале до цикла приёма/пере-

дачи пакетов и по две точки встречи внутри тела

этого цикла, а также одна точка встречи после

выхода из такого цикла перед завершением про-

цедуры. Расположение этих точек поясним с по-

мощью схематичного представления этих проце-

дур, отразив в них лишь порядок исполнения ос-

новных действий.

Схема процедуры-получателя (на 0-ом ядре):

 ----- Процедура-ПОЛУЧАТЕЛЬ (на 0-ом ядре) -----
начало_процедуры

| Init0();

| - инициализация Ethernet-контроллера
| Randevu0(1);

| - подготовка места памяти для пакетов 0,..,P-1

| - формирование кольца дескрипторов приёмника

| с заполнением дескрипторов для пакетов 0,..,P-1
| Randevu0(2);

| - запуск приёмника контроллера

| ЦИКЛ_приёма_пакетов n= P,..,Q-1

| |- подготовка места памяти для n-го пакета

| |- ожидание поступления очередного пакета
| | Randevu0(2*n);

| |- проверка правильности приёма пакета

| | если (ошибка) то {Abort0=1;break;}
| | Randevu0(2*n+1);

| | если (Abort1) то {Abort0=1;break;}

| |- заполнение дескрипторов приёма n-го пакета

| конец_цикла_приёма_пакетов

|- ожидание приёма всех уже отправленных пакетов

|- проверка правильности их приёма-передачи

|- останов приёмника контроллера
| Randevu0(2*Q);

конец_процедуры

Схема процедуры-отправителя, запускаемой

на 1-м ядре:

----- Процедура-ОТПРАВИТЕЛЬ (на 1-ом ядре) -----
начало_процедуры

| Init1();

| Randevu1(1);

| - заполнение данными пакетов 0,..,P-1

| - построение кольца дескрипторов передатчика

| с заполнением дескрипторов для пакетов 0,..,P-1
| Randevu1(2);

| - запуск передатчика контроллера

| ЦИКЛ_передачи_пакетов n= P,..,Q-1

| |- подготовка (заполнение данными) n-го пакета

| |- ожидание конца передачи очередного пакета
| | Randevu1(2*n);

| |- проверка правильности передачи пакета

| | если (ошибка) то {Abort1=1;break;}
| | Randevu1(2*n+1);

| | если (Abort0) то {Abort1=1;break;}

| |- заполнение дескрипторов передачи n-го пакета

| конец_цикла_передачи_пакетов

|- ожидание передачи всех отправленных пакетов

|- останов передатчика контроллера
| Randevu1(2*Q);

конец_процедуры

В этих схемах процедур используются пара-

метры P и Q, которые определяются в про-

грамме теста как define-переменные:

#define P 14 /* кол-во пакетов в кольце, 1<P<Q */

#define Q 32768 /* кол-во пакетов для передачи */

Они задают общее количество передаваемых

в тесте пакетов (Q), а также размер колец (P) де-

скрипторов, формируемых для приёма-передачи

пакетов.

5.2. Одновременное тестирование

контроллеров DMA и Ethernet
Чтобы поверить работоспособность контрол-

леров Internet и DMA при их совместной работе

с памятью, было предложено запускать про-

граммы их тестирования одновременно на раз-

ных ядрах. И согласовать их работу так, чтобы

пересылка очередного блока пакетов данных

контроллером Internet с одного участка основной

памяти в другой (по внутренней петле) совпа-

дала по времени с DMA-передачей по основной

памяти блока данных примерно того же размера.

Для реализации такого тестирования в про-

граммах тестов контроллера Ethernet и контрол-

лера DMA были организованы точки встречи

для обеспечения их синхронизации с использо-

ванием приёмов, рассмотренных ранее в п. 2.3 и

4. Расположение таких точек встречи (рандеву)

поясняется с помощью схематичного представ-

ления алгоритмов этих программ.

Порядок действий программы теста Ethernet-

контроллера, запускаемой на 0-ом ядре, проил-

люстрируем следующей схемой:

20

 ----- Программа теста Ethernet-контроллера -----
начало_программы

| Init0();

| Randevu0(1);

| - инициализация Ethernet-контроллера
| Randevu0(2);

| ЦИКЛ_приёма-передачи_блока_пакетов r= 0,..,R-1

| |- подготовка данных r-го блока пакетов

| |- очистка памяти для приёма r-го блока пакетов

| |- формирование кольца дескрипторов для

| передачи P пакетов r-го блока

| |- формирование кольца дескрипторов для

| приёма P пакетов r-го блока

| | Randevu0(3+r);

| | если (Abort1) то {Abort0=1;break;}

| |- запуск приёма-передачи блока пакетов

| |- ожидание поступления всех пакетов блока

| |- останов приёма-передачи блока пакетов

| |- проверка корректности передачи блока пакетов

| | если (ошибка) то {Abort0=1;break;}

| конец_цикла_приёма-передачи_блоков_пакетов
| Randevu0(3+R);

|- поэлементная проверка правильности передачи

| всех переданных и принятых блоков пакетов
| Randevu0(4+R);

конец_программы

Данная программа после инициализации сво-

его контроллера входит в цикл передачи R бло-

ков, состоящих каждый из P пакетов. В начале

каждого шага цикла она приготавливает данные

для передачи P пакетов и формирует для них

кольца дескрипторов приёмника и передатчика.

И после очередного рандеву, дождавшись от

программы-партнёра готовности к DMA-

передаче, запускает передачу всех приготовлен-

ных P пакетов.

Далее она ожидает завершения этой передачи

(или её прекращения из-за возникшей критиче-

ской ошибки или истечения таймаута). После

чего проверяет, прошла ли передача всех P паке-

тов блока без ошибок. И в случае обнаружения

ошибки прекращает цикл передачи блоков паке-

тов и сообщает об этом программе-партнёру

установкой своего флажка аварийного заверше-

ния.

Аналогично построена и программа теста

контроллера DMA. После инициализации кон-

троллера и прохождения совместного рандеву

она исполняет цикл для DMA-передачи R блоков

данных. В начале каждого шага цикла она под-

готавливает данные для передачи, настраивает

регистры и дескрипторы всех задействованных

DMA-каналов. После чего выходит на точку

встречи для синхронизации своих действий с

программой другого ядра.

После проведения рандеву запускает подго-

товленную DMA-передачу, затем ожидаёт её за-

вершения и проверяет, прошла ли она без оши-

бок. В случае возникновения ошибки прекра-

щает все последующие DMA-передачи и сигна-

лизирует об этом программе-партнёру.

Описанный порядок действий программы те-

ста DMA-контроллера, запускаемой на 1-ом

ядре, проиллюстрируем следующей схемой:

 ----- Программа теста DMA-контроллера -----
начало_программы

| Init1();

| Randevu1(1);

| - инициализация DMA-контроллера

| Randevu1(2);

| ЦИКЛ_передачи_блока_данных r= 0,..,R-1

| |- подготовка данных r-го блока

| |- очистка памяти для приёма r-го блока данных

| |- формирование DMA-дескрипторов для

| |- передачи данных r-го блока
| | Randevu1(3+r);

| | если (Abort0) то {Abort1=0;break;}

| |- запуск DMA-передачи блока данных

| |- ожидание завершения DMA-передачи

| |- останов DMA-передачи

| |- проверка корректности передачи блока данных

| | если (ошибка) то {Abort1=1;break;}

| конец_цикла_DMA-передачи_блоков_данных
| Randevu1(3+R);

|- поэлементная проверка правильности передачи

| всех переданных DMA блоков данных

| Randevu1(4+R);

конец_программы

В представленных схемах программ тестиро-

вания контроллеров Ethernet и DMA использу-

ются параметры P и R, которые определяются в

этих программах как define-переменные:

#define P 14 /* кол-во пакетов в кольце, 1<P<Q */

#define R 1000 /* кол-во блоков для передачи */

Они задают общее количество блоков паке-

тов (R), передаваемых в ходе тестирования по

Ethernet и DMA-каналам, а также размер колец

дескрипторов, формируемых для приёма-пере-

дачи контроллером Ethernet одного блока из P

пакетов.

6. Заключение

В статье представлены простые способы син-

хронизации двух параллельных программ, кото-

рые были успешно применены для разработки

тестов, запускаемых одновременно на двух раз-

ных ядрах микропроцессорной системы MIPS-

архитектуры для проверки совместной работы

контроллеров Ethernet и DMA.

Публикация выполнена в рамках государ-

ственного задания ФГУ ФНЦ НИИСИ РАН по

теме № FNEF-2024-0003 «Методы разработки

аппаратно-программных платформ на основе за-

щищенных и устойчивых к сбоям систем на кри-

сталле и сопроцессоров искусственного интел-

лекта и обработки сигналов».

21

About Some Simple Techniques to Synchronize

Parallel Programs

A.A. Burtsev

Abstract. The article is devoted to the description of simple methods of synchronizing two parallel programs

executed on different computing cores of the same computer installation that have access to common memory. The

described methods of interaction of programs can be provided on the basis of conventional means available in almost

every programming language. And their implementation does not require the use of any special processor instructions

or calls to special functions of the operating system.

Keywords: multi-core microprocessors, methods of synchronization and interaction of parallel pro-

grams, rendezvous.

Литература

1. В.В. Корнеев, А.В. Киселёв. Современные микропроцессоры. М.: НОЛИДЖ, 2000.

2. А.В. Гордеев, А.Ю. Молчанов. Системное программное обеспечение. СПб: Питер, 2002. с. 221-

300.

3. М. Митчел, Д. Оулдем, А. Самьюэл. Программирование для Linux. Профессиональный подход.

М.: Вильямс, 2003. с. 95-120.

4. А.А. Бурцев. Параллельное программирование. Учебное пособие по курсу «Операционные

системы». Обнинск, ИАТЭ, 1994.

5. Википедия. Test-and-set, https://ru.wikipedia.org/wiki/Test-and-set

6. Википедия. Load-link/store-conditional, https://en.wikipedia.org/wiki/Load-link/store-conditional

