

Ускорение быстрого преобразования Фурье

для многомерных массивов комплексных

векторов на основе технологии OpenCL

А.А. Бурцев1

1ФГУ ФНЦ НИИСИ РАН, Москва, Россия, burtsev@niisi.msk.ru

Аннотация. Статья посвящена применению технологии OpenCL, позволяющей использовать мощные

ресурсы графических процессоров для повышения быстродействия вычислительных программ. Рассматрива-

ются варианты разработки в среде OpenCL эффективных параллельных программ, позволяющих ускорить опе-

рации быстрого преобразования Фурье для многомерных массивов комплексных векторов.

Ключевые слова: параллельное программирование, технология OpenCL, гетерогенные си-

стемы, операция Быстрого Преобразования Фурье (БПФ).

1. Введение

В настоящее время на современных компью-

терных установках наряду с широко известными

технологиями OpenMP [1, п. 5.1] и MPI [1, п. 5.2]

для разработки параллельных программ можно

применять также и технологию OpenCL [2], поз-

воляющую использовать мощные ресурсы гра-

фических процессоров для повышения быстро-

действия вычислительных программ. Благодаря

этой технологии сегодня можно ускорять вычис-

ления даже на одном компьютере, если имеюща-

яся в его составе видеокарта поддерживает тех-

нологию OpenCL.

В серии статей [3-6] автором было предло-

жено знакомство с технологией OpenCL с демон-

страцией приёмов разработки программ для ре-

шения ряда вычислительных задач. В частности,

рассматривались варианты построения по тех-

нологии OpenCL программ, ускоряющих пере-

множение больших матриц [4], вычисление ин-

тегралов [6], а также программ, ускоряющих в

среде OpenCL выполнение операции быстрого

преобразования Фурье (БПФ) для комплексных

векторов большой длины [3,5]. Полученный

опыт разработки подобных OpenCL-программ

позволяет утверждать, что с помощью техноло-

гии OpenCL действительно можно существенно

ускорить выполнение такого рода задач.

Но чтобы добиться требуемого ускорения,

необходимо уметь распараллеливать используе-

мую вычислительную программу, т.е. перестра-

ивать её, разбивая на такие части, которые могли

бы исполняться одновременно разными обра-

ботчиками, призванными совместно решать вы-

числительную задачу. И чем лучше удастся та-

кую программу распараллелить, тем в большей

степени получится ускорить её выполнение в

среде OpenCL.

Программы обработки массивов данных, в

которых над каждым отдельным элементом тре-

буется совершать однотипные вычислительные

действия независимо от значений других эле-

ментов, безусловно, можно отнести к классу тех

вычислительных программ, которые хорошо

поддаются распараллеливанию. Поэтому можно

ожидать, что выполнение одних и тех же вычис-

лительных операций параллельно над каждым

элементом большого множества позволит в ре-

зультате существенно ускорить решение всей

вычислительной задачи в целом.

Во многих задачах цифровой обработки сиг-

налов операцию дискретного преобразования

Фурье требуется применять не просто к одному

одиночному вектору комплексных чисел, а сразу

к множеству комплексных векторов, уложенных

в многомерный массив. Операцию Фурье, про-

изводимую над многими векторами, будем об-

разно называть множественной операцией

Фурье. Заметим, что такую множественную опе-

рацию можно зачислить в обозначенный класс

задач, легко поддающихся распараллеливанию.

А значит, можно ожидать, что и эту операцию

над массивами удастся значительно ускорить,

применяя технологию OpenCL.

Представим сначала алгоритмы и формулы,

по которым осуществляется операция множе-

ственного Фурье в обычных программах, рас-

считанных на последовательное их исполнение

одним процессором. А затем рассмотрим разно-

образные варианты программ, позволяющих

ускорить исполнение такой операции в среде

OpenCL. И проанализируем показатели их про-

изводительности, сравнивая результаты их про-

гонов для одних и тех же наборов данных.

23

2. Базовая программа для БПФ

над комплексными векторами

многомерного массива

Операция дискретного преобразования

Фурье (ДПФ) над одиночным вектором ком-

плексных чисел XN заключается в получении ре-

зультирующего вектора YN комплексных чисел,

элементы которого Yk вычисляются на основе

исходного вектора X по правилу:

𝑌𝑘 = ∑{𝑋𝑙 × 𝑊𝑁
𝑘∙𝑛}

𝑁−1

𝑛=0

Здесь используются так называемые весовые ко-

эффициенты вида Wq
N, которые вычисляются

как комплексные величины по формуле:

𝑊𝑁
𝑞

= 𝑒−𝑖∙2𝜋∙𝑞/𝑁 ,
которую можно выразить иначе:

𝑊𝑁
𝑞

= cos
2𝜋𝑞

𝑁
− 𝑖 ∙ sin

2𝜋𝑞

𝑁
,

применяя формулу Эйлера:

𝑒𝑖∙𝜑 = cos 𝜑 + 𝑖 ∙ sin 𝜑,
где 𝑖 – мнимая комплексная единица.

Вычисление одиночной ДПФ непосред-

ственно по этому правилу приводит к алгоритму

сложности O(N2), который требует слишком дли-

тельного времени исполнения и потому редко

применяется на практике, особенно для преобра-

зований комплексных векторов большого раз-

мера. Существует, однако, особый класс алго-

ритмов под общим названием «Быстрое Преоб-

разование Фурье» (БПФ), которые характеризу-

ются вычислительной сложностью O(Nlog2N) и

позволяют выполнить ДПФ гораздо быстрее.

Один из таких алгоритмов для исполнения

операции Фурье над одиночным вектором был

подробно описан в [3, п.2.2] и представлен там в

виде функции FFT (Fast Fourier Transform) на

языке Си с таким заголовком:

void FFT(int N, complex *Y,

 complex *X, complex *W)

Такая функция совершает операцию БПФ по

заданному комплексному вектору X длины N,

получая в качестве результата комплексный век-

тор Y той же длины. Далее будем обозначать та-

кую операцию в виде:

𝑌 = 𝐹𝐹𝑇𝑁(𝑋)

Предполагается, что весовые коэффициенты, ис-

пользуемые этой функцией для исполнения опе-

рации БПФ, вычисляются заранее и передаются

ей в виде в виде таблицы – массива комплексных

чисел W (размером от 0 до N).

Используя эту функцию, выразим операцию

множественного БПФ для двумерных массивов

(матриц) комплексных векторов:

𝑌𝑀×𝐽 = 𝑀𝐹𝐹𝑇𝑁(𝑋𝑀×𝐽)

с помощью Си-функции MFFT:

void MFFT(int M, int J, int N,

complex *X,complex *Y,complex *W){

int m,j,mj;

for (m=0; m<M; m++)

 for (j=0;j<J;j++){ mj=(m*J+j)*N;

 FFT(N,&Y[mj],&X[mj],W);

 }//for j,m

}//MFFT

В ней в теле внутреннего цикла (по j) над векто-

рами X[m,j] и Y[m,j], являющимися элементами

двумерных массивов X и Y, осуществляется оди-

ночная операция БПФ:

𝑌𝑚,𝑗 = 𝐹𝐹𝑇𝑁(𝑋𝑚,𝑗)

Путём перебора циклов по m и j функция MFFT

в результате исполнит операции БПФ над всеми

парами векторов заданных матриц.

Такой последовательный алгоритм выполне-

ния операции множественного БПФ примем в

качестве базового. Далее будем рассматривать

различные варианты исполнения той же опера-

ции множественного БПФ в среде параллельных

исполнителей. А также будем сравнивать каж-

дый из них (по производительности) с этим ба-

зовым, чтобы выявить, какой вариант даёт мак-

симальное ускорение в среде OpenCL.

3. Первоначальный вариант (А)

OpenCL-программы для множе-

ственной операции БПФ

Ранее (см. [3, п.3]) был предложен вариант

OpenCL-программы, позволяющий ускорить

операцию БПФ для одиночного вектора ком-

плексных чисел. Приняв его за основу, попыта-

емся модифицировать его OpenCL-программу

так, чтобы она осуществляла операцию БПФ для

всех пар векторов заданных матриц X и Y, т.е. в

итоге стала бы исполнять множественную опе-

рацию БПФ над матрицами векторов.

3.1. Простая модификация основной

OpenCL-программы
Сначала попробуем просто переделать ос-

новную программу, оставив прежними её проце-

дуры ядра. Осуществим такую переделку тем же

естественным приёмом, как и в случае с после-

довательной программой. Для выполнения мно-

жественной операции БПФ в среде OpenCL со-

ставим отдельную функцию (см. далее clMFFT).

В ней разместим два вложенных цикла с перебо-

ром по m и по j. А в теле внутреннего цикла (по

j) для осуществления одиночной операции БПФ

24

с очередной парой векторов X[m,j] и Y[m,j] по-

ставим вызов функции clFFT, которая была по-

дробно описана ранее (она была представлена в

п.3.2 в [3]).

void clMFFT(int M,int J,int N,

complex *Y,complex *X,complex *W){

int m,j,mj;

for (m=0; m<M; m++) {

 for (j=0;j<J;j++){ mj=(m*J+j)*N;

 clFFT(N,&Y[mj],&X[mj]);

 }//for j,m

}//clMFFT

Заметим, что перед вызовом функции clFFT

в переменной mj по формуле mj=(m*J+j)*N

предварительно вычисляется индекс, начиная с

которого в многомерных массивах X[M][J][N] и

Y[M][J][N] располагаются соответственно век-

тора X[m,j] и Y[m,j]. Именно для этих комплекс-

ных векторов, как элементов матриц X[M][J] и

Y[M][J], на очередном шаге внутреннего цикла и

вызывается функция clFFT, чтобы исполнить

одиночную операцию БПФ. В последующих ал-

горитмах будем неоднократно использовать та-

кую формулу вычисления значения mj для опре-

деления индекса месторасположения вектора в

многомерном массиве.

Чтобы оценить, насколько удаётся ускорить

операцию множественного БПФ с помощью та-

кой переделанной OpenCL-программы, сравним

время исполнения (TCL) функции clMFFT (в

среде OpenCL с множеством параллельных ис-

полнителей) со временем исполнения (TCPU)

функции MFFT (на одном процессоре) с теми же

параметрами и вычислим коэффициент ускоре-

ния K как отношение TCPU/TCL.

Такая программа с вызовами этих функций

(варианта А1) была разработана (на языке Си)

как консольное приложение в MS Visual Studio.

Для представления комплексного числа парой

вещественных значений одинарной точности в

Си-программе тип complex определялся так:

#define complex cl_float2

А в программе, содержащей процедуры ядра на

языке OpenCL, – немного иначе:

#define complex float2

Программа была скомпонована в MS Visual

Studio под ОС Windows-7 для исполнения на

OpenCL-платформе, содержащей процессор In-

tel i3-2100 (3.1 Ггц) и специализированную ви-

деокарту NVidia GeForce 1050ti (1392 Мгц).

На этой платформе (будем называть её плат-

форма «NVidia») скомпонованная OpenCL-

программа многократно прогонялась для матриц

комплексных векторов различных размеров

(M×J) и длин (N). Усреднённые показатели коэф-

фициентов ускорения, полученные в результате

таких прогонов, представлены в таблице 1.

Таблица 1. Ускорение множественного БПФ OpenCL-

программой варианта А1 на платформе NVidia

M×J:

N

2×2 5×5 10

×10

20

×20

50

×50

100

×100

200

×200

32 0.023 0.024 0.0175 0.020 0.014 0.0032 0.0012

64 0.046 0.051 0.0475 0.0325 0.019 0.0079 0.0036

128 0.110 0.1166 0.1033 0.0815 0.0812 0.0085 0.0034

256 0.254 0.2240 0.2247 0.2316 0.0879 0.0181 0.0091

512 0.444 0.4332 0.4163 0.2780 0.1030 0.0348 ---

1024 0.898 1.0071 0.9260 0.6293 0.2368 0.0535 ---

2048 2.165 1.9904 2.0805 1.5418 0.4658 0.0864 ---

4096 4.449 3.7327 3.7107 2.9872 0.6236 --- ---

8192 7.461 6.2371 5.6467 4.5101 0.8492 --- ---

16384 12.79 12.214 9.1541 9.7322 --- --- ---

32768 26.40 21.397 22.617 21.582 --- --- ---

65536 42.35 40.909 36.044 36.285 --- --- ---

Замечание: символы --- означают, что для таких значе-

ний параметров программа не может быть корректно

исполнена (например, из-за недостатка памяти)

Сравнивая показатели ускорения операции

множественной БПФ (MFFT) из таблицы 1 с ана-

логичными показателями ускорения одиночной

операции БПФ (FFT), представленными в таб-

лице 2 в [3], можно заметить, что они примерно

одинаковы для одной и той же длины векторов.

Причём с ростом M и J итоговые коэффициенты

ускорения мало изменяются.

3.2. Модификация процедур ядра
Теперь попробуем исходную OpenCL-

программу, рассмотренную ранее (в п.3 в [3])

для одиночной операции БПФ, переделать не-

много по-другому. Внедрим циклы по m и j для

перебора векторов не в основную программу, а в

её процедуры OpenCL-ядра.

Вставим такие циклы в процедуру ядра,

чтобы осуществлять бит-реверсное копирование

векторов из матрицы X в матрицу Y:

__kernel void fft_brvprstMJ

(uint N,const uint L,

 __global complex *X,

 __global const complex *Y,

 __global const uint *BRT,

 const uint M, const uint J){

uint m,j,mj,k,i; i=get_global_id(0);

k=BRT[i]; // k=бит-реверсное значение для i
for (m=0; m<M; m++)

for (j=0; j<J; j++)

{ mj=(m*J+j)*N; Y[mj+k]=X[mj+i]; }

}// fft_brvprstMJ

В результате вызова такой процедуры испол-

нителем под номером i в среде OpenCL элементы

с индексом i всех векторов, содержащихся в мат-

рице X, будут скопированы в соответствующие

им векторы матрицы Y на позицию с индексом

k, вычисленную как бит-реверсное значение для

индекса i.

25

Аналогичную модификацию сделаем и для

другой процедуры ядра, которая вызывается

каждым исполнителем OpenCL-среды на оче-

редной стадии группового исполнения парал-

лельных операций «бабочек Фурье» (БФ) над

векторами (см. 5-й пункт в списке действий, опи-

санных в п.3.2 в [3]). В результате получим та-

кую процедуру ядра:

__kernel void fft_btflyMJ

(int t, int N,__global complex *Y,

__global complex *W,uint M,uint J)

{uint G,R,k,f,s,h,a,b,u,m,j,mj;

 uint i= get_global_id(0);

 G=1<<(t-1); // кол-во групп G= 2^(t-1)

 R=N>>t; // кол-во пар в группе R= 2^(P-t);

 k=i&(G-1); // номер группы = i % G

 f=i>>(t-1);// номер пары в группе= i / G

 s=G; h=2*s;

 a=k+f*h; b=a+s; u=R*k;

 complex V= W[u];

 for (m=0; m<M; m++)

 for (j=0; j<J; j++) {

 mj=(m*J+j)*N;

 BTF(Y[mj+a],Y[mj+b],V);

 }// for j,m

}//fft_btflyMJ

Конечно же, и в основную OpenCL-

программу тоже придётся внести добавления,

чтобы эти процедуры ядра могли запускаться

уже с расширенным набором параметров:

kn1=clCreateKernel(prgrm,"fft_brvprstMJ",0);

kn2=clCreateKernel(prgrm,"fft_btflyMJ",0);
clSetKernelArg(kn1,5,szI,&M);

clSetKernelArg(kn1,6,szI,&J);

clSetKernelArg(kn2,4,szI,&M);

clSetKernelArg(kn2,5,szI,&J);

Коэффициенты ускорения, которые обеспе-

чивает полученный в результате такой пере-

делки вариант (А2) OpenCL-программы, пред-

ставим в таблице 2.

Таблица 2. Ускорение множественного БПФ OpenCL-

программой варианта А2 на платформе NVidia

M×J:

N

2×2 5×5 10

×10

20

×20

50

×50

100

×100

200

×200

32 0.091 0.600 1.667 2.667 6.25 5.10 5.25

64 0.111 0.857 4.00 6.333 8.714 8.571 9.238

128 0.364 2.00 7.00 11.750 15.556 17.625 17.308

256 0.923 3.875 12.60 34.333 29.273 31.950 31.152

512 1.438 9.650 17.875 42.999 59.150 66.073 63.240

1024 2.826 17.083 46.089 72.489 88.283 101.18 102.16

2048 6.088 33.075 79.185 109.39 128.61 134.75 ---

4096 12.89 51.199 115.08 150.09 166.12 157.44 ---

8192 30.88 79.759 138.40 159.42 165.28 --- ---

16384 52.80 128.08 175.53 149.61 166.70 --- ---

32768 80.28 136.18 166.71 182.04 --- --- ---

65536 106.9 172.85 187.84 184.12 --- --- ---

Сравнивая его с предыдущим вариантом

(А1), можно заметить, что показатели ускорения

заметно подросли. Чем же можно объяснить та-

кой их рост?

Дело в том, что в процедурах ядра индексы

(i,k) элементов для бит-реверсной перестановки

и индексы (a,b,u) элементов, участвующих в опе-

рациях БФ («бабочки Фурье»), теперь вычисля-

ются всего лишь один раз. А затем они много-

кратно применяются сразу для обработки эле-

ментов (с такими индексами) у всех векторов,

перебираемых далее в циклах (по m и по j). Вот

поэтому процедуры ядра и стали выполняться

немного быстрее.

Заметим также, что таблице 2 (в отличие от

таблицы 1 предыдущего варианта) уже стано-

вится заметно, что с ростом размеров (M и J)

матриц векторов коэффициенты ускорения тоже

подрастают. Правда, увы, не в такой же степени,

как сами эти размеры.

Чтобы добиться ещё больших показателей

ускорения, попробуем перестроить OpenCL-

программу так, чтобы при прогоне её в среде

OpenCL использовать как можно больше парал-

лельных исполнителей.

4. Альтернативный вариант (B)

OpenCL-программы для множе-

ственной операции БПФ

Ранее уже неоднократно демонстрировалось

(например, в [4]), что любую программу, которая

над каждым элементом массива осуществляет

вычислительные действия, независимые от зна-

чения других элементов, можно легко распарал-

лелить с тем, чтобы ускорить её исполнение в

среде OpenCL. Для этого надо лишь составить

OpenCL-программу так, чтобы вычислительная

обработка каждого элемента массива выполня-

лась отдельным исполнителем OpenCL-среды,

функционирующим параллельно с другими.

Следуя этому правилу, составим OpenCL-

программу выполнения операции множествен-

ного Фурье YM×J=MFFT(XM×J) для двумерных

массивов XM×J и YM×J комплексных векторов. Бу-

дем задействовать ансамбль из M×J параллель-

ных исполнителей OpenCL-среды, сгруппиро-

ванных в двумерный массив [M][J], назначив

каждому из них в качестве задания исполнить

операцию Ym,j=FFT(Xm,j) над выделенной ему па-

рой векторов (с индексами m,j).

Для исполнения одиночной операции БПФ

над парой векторов оформим функцию cl_FFT,

заимствовав при её оформлении алгоритм функ-

ции FFT, подробно описанный в п. 2.2 в [3], и

подкорректировав её заголовок с учётом особен-

ностей языка OpenCL:

void cl_FFT (uint N,

26

 __global complex *VY,

 __global complex *VX,

 const __global complex *VW) {

uint P,t,s,h,G,R,d,k,u,j,a,b,i;

complex W; complex XP[NP];

P=iLog2(N); // so that N = 2^P
// ч1. Бит-реверсное копирование XP <=VX
 copy_brvprst(N, P, VX, XP);
s=1;h=2;G=1; R=N/2; d=N/2;

//ч2.Основной цикл исполнения бабочек Фурье:
for (t=1; t<=P; t++) {

 for (k=0,u=0; k<G; k++,u=u+d) {

 W= VW[u];

 for (j=0,a=k; j<R; j++,a=a+h)

 { b=a+s; BTF(XP[a],XP[b],W); }

 }//for k

 h=h*2;s=s*2; G=G*2; R=R/2; d=d/2;

}//for t

// ч3. Копирование XP => VY
 for (i=0; i<N; i++) VY[i]= XP[i];

}//cl_FFT

В этой функции для улучшения быстродей-

ствия вектор VX из глобальной памяти сначала

копируется при бит-реверсной перестановке в

вектор XP, размещаемый в приватной памяти ис-

полнителя. Далее все операции БФ («бабочек

Фурье») с помощью макрооперации BTF, по-

дробно описанной в п.3.1 в [3], исполняются над

вектором XP, который затем записывается как

результат в вектор VY глобальной памяти.

Используя функцию cl_FFT в качестве вспо-

могательной, составим теперь процедуру

OpenCL-ядра, которая будет запускаться на каж-

дом из параллельных исполнителей OpenCL-

среды, собранных в двумерный массив [M][J]:

__kernel void cl_kern_MFFT

(uint M, uint J, uint N,

 __global complex *Y,

 const __global complex *X,

 const __global complex *W) {

 int m, j, mj;

 m= get_global_id(0);

 j= get_global_id(1);

 mj=(m*J+j)*N;

// БПФ для вектора Y[m,j] <= FFT(X[m,j])
 cl_FFT(N, &Y[mj], &X[mj], W);

}//cl_kern_MFFT

В этой процедуре с помощью применения

функции get_global_id каждый исполнитель сам

определяет значения индексов m и j, указываю-

щие месторасположение в матрицах X и Y той

пары векторов, для которых ему предстоит вы-

полнить операцию БПФ.

Для запуска такой процедуры ядра в OpenCL-

среде в основную OpenCL-программу добавим

следующие действия.

1. Процедуре ядра cl_kern_MFFT назначим

дескриптор knM:

cl_kernel knM=

 clCreateKernel(prgrm,"cl_kern_MFFT",NULL);

2. Выделим в памяти OpenCL-устройства бу-

феры для данных, участвующих в операции:

cl_mem objX,objY;

cl_uint szC= sizeof(complex);

ObjX=clCreateBuffer(cntxt,

 CL_MEM_READ_ONLY,szC*M*J*N,0,0);

ObjY=clCreateBuffer(cntxt,

CL_MEM_READ_WRITE,szC*M*J*N,0,0);

3. Загрузим матрицу комплексных векторов

X[M][J][N] в буфер объекта objX:

cl_uint szC= sizeof(complex);

clEnqueueWriteBuffer(cmndQ,objX

 CL_TRUE,0,szC*N*M*J,X,0,0,0);

4. Назначим процедуре ядра cl_kern_MFFT 6

фактических параметров:

cl_uint szI= sizeof(cl_uint);

cl_uint szM= sizeof(cl_mem);

clSetKernelArg(knM,0,szI,&M);

clSetKernelArg(knM,1,szI,&J);

clSetKernelArg(knM,2,szI,&N);

clSetKernelArg(knM,3,szM,&objY);

clSetKernelArg(knM,4,szM,&objX);

clSetKernelArg(knM,5,szM,&objW);

5. Запустим в OpenCL-среде процедуру ядра

cl_kern_MFFT на множестве из M×J исполните-

лей и дождёмся её завершения всеми исполните-

лями:

size_t gWS[2]= {M,J};

cl_event evM;

clEnqueueNDRangeKernel(cmndQ,

 knM,2,NULL,gWS,NULL,0,NULL,&evM);

clFinish(cmndQ);

6. Полученную в буфере объекта objY мат-

рицу векторов запишем в Y[M][J][N]:

clEnqueueReadBuffer(cmndQ,objY,

CL_TRUE,0,szC*N*M*J,Y,0,0,0);

Представим теперь, какие коэффициенты

ускорения обеспечивает полученный таким спо-

собом вариант (B) OpenCL-программы (см. таб-

лицу 3).

Сравнивая их с показателями предыдущих

вариантов A1 и A2 (в таблицах 1 и 2), можно за-

метить, что при малой длине обрабатываемых

векторов (N<1024), вариант B обеспечивает луч-

шие коэффициенты ускорения для больших раз-

меров матриц (M×J>=20×20). Но при больших

значениях N (N≥1024) вариант B, увы, уступает

варианту A2 почти на всех размерах матриц M×J

(и больших, и малых).

Таблица 3. Ускорение множественного БПФ OpenCL-

программой варианта B на платформе NVidia

27

M×J:

N

2×2 5×5 10

×10

20

×20

50

×50

100

×100

200

×200

32 0.40 1.50 5.00 25.00 49.73 51.00 82.00

64 0.40 2.00 5.50 19.00 59.00 61.67 48.50

128 0.67 4.67 14.00 22.00 72.50 74.75 63.57

256 0.91 5.33 21.00 35.67 66.84 78.88 71.79

512 1.53 7.89 23.50 45.60 78.22 82.76 78.18

1024 1.79 7.00 22.29 50.71 86.78 87.78 82.44

2048 1.90 7.91 24.03 58.42 91.50 96.72 ---

4096 1.61 8.75 28.15 64.95 98.73 107.80 ---

8192 2.03 11.69 36.28 81.03 125.21 --- ---

16384 2.08 11.61 37.60 88.17 131.26 --- ---

32768 2.24 12.44 40.37 92.67 --- ---

65536 --- --- --- --- --- ---

Получается, что OpenCL-программы вариан-

тов A1,A2 проявляют свои достоинства с ростом

длины векторов N, а OpenCL-программа вари-

анта B – с ростом размеров матриц M×J. А

нельзя ли совместить оба этих достоинства в од-

ной OpenCL-программе?

5. Комбинированный вариант

(C) OpenCL-программы для

множественной операции БПФ

Создадим теперь такую OpenCL-программу

для множественной операции БПФ, которая за-

действует N×M×J параллельных исполнителей

OpenCL-среды. И распределяет вычисления

между ними так, что операцией БПФ для каждой

пары векторов (Xm,j,Ym,j) совместно занимаются

N исполнителей (как в варианте A1), но при этом

вычисления БПФ для всех пар векторов матриц

XM×J и YM×J осуществляются не последова-

тельно, а параллельно (одновременно).

5.1. Модификация процедур ядра
Возьмём процедуры ядра, рассмотренные в

п. 3.2 (варианта A2), и заменим в их теле циклы

по m и по j (выделенные жирным шрифтом) на

одиночные действия с парой элементов обраба-

тываемых векторов. А для вычисления место-

расположения mj тех векторов в матрицах X и Y,

которые назначены для обработки конкретному

исполнителю, определим значения индексов для

m и j с помощью функции get_global_id.

В результате заменим обозначенные циклы в

процедуре ядра fft_brvprstMJ на фрагмент:

m= get_global_id(1);

j= get_global_id(2);

{ mj=(m*J+j)*N; Y[mj+k]=X[mj+i]; }

А в процедуре cl_fft_btflyMJ – на фрагмент:

m= get_global_id(1);

j= get_global_id(2);

mj=(m*J+j)*N;

BTF(Y[mj+a],Y[mj+b],V);

5.2. Модификация основной

OpenCL-программы варианта С
Для запуска таких процедур ядра в OpenCL-

среде в основной OpenCL-программе необхо-

димо изменить прежнюю последовательность

действий, описанных в п.3.2 в [3] и заимствован-

ных для вариантов А1 и А2.

1. Во-первых, внесём добавления для опреде-

ления дескрипторов kn1 и kn2 новых процедур

ядра и назначения для них новых параметров,

которые были сделаны в разделе 3.2.

2. Во-вторых, добавим фрагменты для выде-

ления памяти объектам objX, objY, а также за-

грузки матрицы X в память OpenCL-устройства

(в буфер objX), описанные в пунктах 2,3 списка

действий в разделе 4.

3. Запустим в OpenCL-среде процедуру ядра

fft_brvprstMJ на множестве из N×M×J исполни-

телей, сгруппированных в трёхмерный массив

[N][M][J], для бит-реверсного параллельного ко-

пирования всех M×J векторов из буфера objX,

представляющего матрицу XM×J, в соответствую-

щие им вектора буфера objY, представляющего

матрицу YM×J. И дождёмся окончания её завер-

шения всеми исполнителями:

size_t gWS[3]= { N,M,J };

cl_event ev1;

clEnqueueNDRangeKernel(cmndQ,

 kn1,3,NULL,gWS,NULL,0,NULL,&ev1);

clFinish(cmndQ);

4. Теперь поставим основной цикл (по t), в

котором на каждом шаге (t) будем запускать про-

цедуру ядра cl_fft_btflyMJ на множестве из

(N/2)×M×J исполнителей для совершения всех

операций БФ t-го этапа (t=1,..,P) параллельно

для всех N/2 пар элементов всех M×J векторов,

содержащихся в буфере матрицы Y:

cl_uint t; gWS[0]=N/2;

cl_event ev2;

for (t=1; t<=P; t++) {

 clSetKernelArg(kn2,0,szI,&t);

 clEnqueueNDRangeKernel(cmndQ,

 kn2,3,NULL,gWS,NULL,0,NULL,&ev2);

 clWaitForEvents(1,&ev2);

}//for t

В начале каждого шага цикла требуется назна-

чить 0-му параметру процедуры ядра значение

номера (t) текущего этапа, а перед его оконча-

нием следует дождаться завершения этой проце-

дуры ядра всеми исполнителями с помощью вы-

зова функции clWaitForEvents.

5. Наконец, полученную в буфере objY мат-

рицу векторов нужно скопировать из памяти

OpenCL-устройства в итоговую матрицу Y, для

чего добавим в основную программу фрагмент,

описанный в п. 6 списка действий в разделе 4.

28

Представим теперь, какие коэффициенты

ускорения обеспечивает полученный в резуль-

тате проведённой модификации новый вариант

(С) OpenCL-программы (см. таблицу 4).

Таблица 4. Ускорение множественного БПФ OpenCL-

программой варианта C на платформе NVidia

M×J:

N

2×2 5×5 10

×10

20

×20

50

×50

100

×100

200

×200

32 0.061 0.375 1.667 14.50 36.00 26.07 124.40

64 0.312 0.680 5.567 10.067 45.15 82.72 76.45

128 0.241 3.025 8.840 34.10 66.82 112.60 94.80

256 0.778 3.281 20.36 71.30 81.60 119.45 121.77

512 1.498 11.267 29.415 56.087 129.45 120.34 119.58

1024 4.578 20.417 47.680 93.176 116.61 140.66 133.59

2048 8.276 33.489 89.667 120.26 151.15 160.42 ---

4096 15.32 59.788 115.75 147.54 164.95 162.56 ---

8192 27.81 86.733 143.77 172.49 184.86 --- ---

16384 41.17 115.56 170.44 195.11 176.31 --- ---

32768 67.48 147.76 171.20 209.55 --- --- ---

65536 117.0 179.57 222.73 207.10 --- --- ---

Из приведённой таблицы хорошо видно, что

при таком варианте действительно удаётся сов-

местить достоинства рассмотренных ранее вари-

антов A1, A2 и B. Во-первых, анализируя пока-

затели в каждой строке этой таблицы, можно за-

метить, что при любой фиксированной длине (N)

коэффициент ускорения значительно увеличива-

ется с ростом размеров матриц (M×J). И во-вто-

рых, анализируя показатели каждого столбца

таблицы, можно отметить и другую закономер-

ность: для матриц любого фиксированного раз-

мера (M×J) коэффициент ускорения суще-

ственно вырастает при росте длины векторов

(N). И это позволяет утверждать, что в этом ком-

бинированном варианте удаётся совместить до-

стоинства всех прежних вариантов.

Сравнивая показатели коэффициентов уско-

рения таблицы 4 с аналогичными показателями

из приведённых ранее таблиц 1-3, можно сделать

вывод, что такой комбинированный вариант (C)

обеспечивает наилучшие результаты ускорения

множественной операции Фурье

YM×J=MFFTN(XM×J) почти для всех параметров:

длинах векторов N и размеров матриц M×J.

А максимального значения (222.73) коэффи-

циент ускорения этой операции (на платформе

«NVidia») достигает (как это и отмечено в таб-

лице 4) при значениях параметров: N=65536 (216)

и M×J=10×10. Заметим при этом, что для оди-

ночной операции FFTN на векторах той же

длины (N=216) при запуске программы в

OpenCL-среде можно добиться ускорения лишь

в 45.67 раза, применив первоначальный вариант

OpenCL-программы, представленной в [3], и

только в 69 раз, если применить улучшенный ва-

риант этой же OpenCL-программы, описанный в

[5]. (Эти показатели приведены соответственно

в таблице 2 в [3] и таблице 10 в [5]).

6. Множественные операции

БПФ для платформы «Intel»

Рассмотренные варианты программ, разрабо-

танные для ускорения множественной операции

БПФ (МБПФ) в среде OpenCL, были опробо-

ваны также и на других OpenCL-платформах. В

частности, они компоновались на обычном

настольном компьютере (в MS Visual Studio под

ОС Windows-10) и запускались на аппаратной

платформе, оснащённой процессором CPU Intel-

i59400 (2.9 Ггц) и встроенным графическим про-

цессором GPU UHD 630 (350 МГц).

На этой платформе (будем называть её далее

платформа «Intel») скомпонованные OpenCL-

программы всех рассмотренных вариантов (A1,

A2, B, C) многократно прогонялись для матриц

векторов комплексных чисел одинарной точно-

сти с теми же параметрами, что и для платформы

«NVidia». Коэффициенты ускорения, получен-

ные в результате произведённых прогонов с мат-

рицами таких же размеров (M×J) и такими же

длинами векторов (N), представлены соответ-

ственно в таблицах 5-8.

Таблица 5. Ускорение множественного БПФ OpenCL-

программой варианта A1 на платформе Intel

M×J:

N

2×2 5×5 10

×10

20

×20

50

×50

100

×100

200

×200

32 0.012 0.011 0.011 0.012 0.012 0.012 0.012

64 0.024 0.024 0.021 0.026 0.024 0.025 0.025

128 0.048 0.045 0.049 0.049 0.047 0.032 0.049

256 0.096 0.093 0.094 0.097 0.097 0.096 0.112

512 0.196 0.197 0.188 0.192 0.195 0.193 0.195

1024 0.376 0.385 0.389 0.378 0.390 0.402 0.402

2048 0.766 0.768 0.795 0.784 0.763 0.745 ---

4096 1.505 1.576 1.564 1.568 1.402 1.624 ---

8192 3.116 3.296 2.658 2.995 2.954 --- ---

16384 5.864 5.893 6.063 5.502 6.566 --- ---

32768 11.02 10.797 10.994 11.307 --- --- ---

65536 19.92 20.507 20.275 21.023 --- --- ---

Таблица 6. Ускорение множественного БПФ OpenCL-

программой варианта A2 на платформе Intel

M×J:

N

2×2 5×5 10

×10

20

×20

50

×50

100

×100

200

×200

32 0.045 0.260 0.836 1.785 2.439 2.548 1.987

64 0.094 0.519 1.638 3.350 4.508 4.223 3.980

128 0.184 0.954 3.239 5.888 9.838 7.771 7.575

256 0.379 2.276 6.149 12.707 14.681 14.563 13.625

512 0.763 4.088 11.470 23.291 25.159 24.262 22.689

1024 1.485 8.004 22.506 36.549 33.480 32.379 ---

2048 3.138 15.043 37.352 44.731 33.296 29.169 ---

4096 5.745 25.840 43.223 38.666 32.489 --- ---

8192 10.74 37.401 44.659 31.583 27.576 --- ---

16384 18.51 40.257 30.305 27.803 --- --- ---

32768 29.29 40.174 26.196 26.154 --- --- ---

65536 41.23 32.990 28.406 --- --- --- ---

29

Таблица 7. Ускорение множественного БПФ OpenCL-

программой варианта B на платформе Intel

M×J:

N

2×2 5×5 10

×10

20

×20

50

×50

100

×100

200

×200

32 0.175 1.006 3.867 12.976 15.648 12.423 11.666

64 0.273 1.713 6.069 17.946 14.600 8.963 9.770

128 0.368 2.012 8.131 21.097 8.490 6.131 7.176

256 0.460 2.487 10.206 18.855 6.061 5.127 5.018

512 0.526 2.900 9.506 15.522 5.099 4.565 3.793

1024 0.580 3.126 10.544 11.370 4.424 4.197 ---

2048 0.605 3.004 10.053 9.557 4.319 4.006 ---

4096 0.617 3.067 8.567 7.896 4.092 --- ---

8192 0.650 2.927 8.399 6.741 3.929 --- ---

16384 0.660 2.828 6.567 5.883 --- --- ---

32768 0.635 2.613 5.382 5.753 --- --- ---

65536 0.637 2.218 6.285 --- --- --- ---

Таблица 8. Ускорение множественной операции БПФ

OpenCL-программой варианта C на платформе Intel

M×J:

N

2×2 5×5 10

×10

20

×20

50

×50

100

×100

200

×200

32 0.046 0.292 1.084 4.321 18.408 29.340 22.365

64 0.093 0.595 2.302 7.844 29.483 29.211 21.656

128 0.187 1.190 4.067 13.439 31.170 29.595 27.637

256 0.384 2.237 7.895 22.462 36.091 28.672 29.091

512 0.757 4.706 13.512 33.059 34.963 30.628 28.058

1024 1.496 8.116 23.629 40.344 32.374 32.791 ---

2048 3.010 14.688 34.601 42.086 35.342 34.897 ---

4096 5.731 25.160 42.610 37.504 37.322 --- ---

8192 10.77 37.797 46.239 38.721 38.265 --- ---

16384 21.92 47.783 41.826 40.246 --- --- ---

32768 31.03 43.424 39.520 37.231 --- --- ---

65536 42.23 41.645 41.793 --- --- --- ---

Сравнивая показатели ускорения, записан-

ные в этих таблицах, можно сделать вывод, что

и на платформе «Intel» наилучшие коэффици-

енты ускорения множественной операции БПФ

почти для всех параметров обеспечивает комби-

нированный вариант C (см. таблицу 8).

В строках и столбцах таблицы результатов,

полученных для этого варианта на OpenCL-

платформе «Intel», также можно увидеть соблю-

дение отмеченных ранее закономерностей. При

фиксированном значении длины векторов N ко-

эффициент ускорения заметно подрастает при

увеличении размеров матриц M×J. А для фикси-

рованных размеров матриц M×J коэффициент

ускорения вырастает с ростом длины векторов

N.

Правда, эти закономерности перестают со-

блюдаться для самых крайних показателей каж-

дой строки и каждого столбца, где параметры N

и M×J достигают предельно высоких значений.

При таких больших значениях параметров

OpenCL-программа либо вообще не может кор-

ректно вычислить требуемый результат из-за не-

хватки памяти (тогда вместо коэффициента в

таблице проставляется знак ---), либо её вычис-

ления в OpenCL-среде оказываются недоста-

точно эффективными по причине реального от-

сутствия столь необходимого количества вычис-

лительных ядер на используемой OpenCL-

платформе.

Как видно из приведённой таблицы 5, для

множественной операции БПФ на платформе

«Intel» удаётся достичь максимального значения

коэффициента ускорения 47.783 при значениях

параметров: N=16384 (214) и M×J=5×5.

Заметим, что на этой же платформе ранее для

одиночной операции БПФ той же длины N=214

были получены такие значения коэффициентов

ускорения: 5.333 для первоначального варианта

OpenCL-программы, представленного в [3]; и

11.38 для оптимизированного варианта OpenCL-

программы, описанного в [5]. (Эти значения

приведены соответственно в таблице 1 в [3] и в

таблице 9 в [5]).

7. Заключение

Таким образом, технологию OpenCL можно

успешно применять для повышения быстродей-

ствия таких вычислительных программ, в кото-

рых требуется выполнять однотипные операции

над многочисленными объектами, сгруппиро-

ванными в массивы данных.

Но для этого требуется уметь распараллели-

вать вычислительную задачу так, чтобы каждый

элемент огромного массива объектов данных

мог обрабатываться отдельным исполнителем

OpenCL-среды независимо от других. В таком

случае можно добиться значительного ускоре-

ния выполнения такой задачи в OpenCL-среде.

Это наглядно демонстрируют представлен-

ные примеры OpenCL-программ, позволяющих

существенно ускорить выполнение множествен-

ной операции быстрого преобразования Фурье

для многомерных массивов комплексных векто-

ров большого размера. Следует отметить также,

что в среде OpenCL для множественной опера-

ции Фурье над массивом векторов удаётся до-

биться ускорения в значительно большей сте-

пени, чем для такой же операции Фурье над оди-

ночным вектором.

Публикация выполнена в рамках государ-

ственного задания ФГУ ФНЦ НИИСИ РАН по

теме № FNEF-2024-0003 «Методы разработки

аппаратно-программных платформ на основе за-

щищенных и устойчивых к сбоям систем на кри-

сталле и сопроцессоров искусственного интел-

лекта и обработки сигналов»

.

30

Acceleration of Fast Fourier Transform for

Multidimensional Arrays of Complex Vectors

Based on OpenCL Technology

A.A. Burtsev

Abstract. The article is devoted to the use of OpenCL technology, which allows using the powerful resources

of graphic processors to increase the speed of computing programs. Development variants of efficient parallel programs

in the OpenCL environment to accelerate the fast Fourier transform operation for multidimensional arrays of complex

vectors are considered.

Keywords: parallel programming, OpenCL technology, heterogeneous systems, operation of Fast

Fourier Transform (FFT)

Литература

1. В.В. Воеводин, Вл.В. Воеводин. Параллельные вычисления. Спб., БХВ-Петербург, 2004.

2. Официальный OpenCL–сайт организации Khronos Group, http://www.khronos.org/opencl/

3. А.А. Бурцев. Ускорение быстрого преобразования Фурье на основе технологии OpenCL.

«Труды НИИСИ РАН», Т. 11 (2021), № 4, 27–37.

4. А.А. Бурцев. Оптимизация операции перемножения матриц на основе технологии OpenCL.

«Труды НИИСИ РАН», Т. 10 (2020), № 5-6, 100–112.

5. А.А. Бурцев. Оптимизация операции быстрого преобразования Фурье в среде OpenCL. //

«Труды НИИСИ РАН», Т.12 (2022), №1-2, 11-27.

6. А.А. Бурцев. Применение технологии OpenCL для ускорения вычисления интегралов. //

«Труды НИИСИ РАН», Т.13 (2023), №1-2, 19-24.

http://www.khronos.org/opencl/

