

Библиотека поддержки протокола OPC UA

для программируемых логических

контроллеров семейства «Багет»

Т. К. Грингауз1, Д. В. Яриков2

1НИЦ «Курчатовский институт» – НИИСИ, Москва, Россия, gring@niisi.ras.ru;

2НИЦ «Курчатовский институт» – НИИСИ, Москва, Россия, yarikov@ niisi.ras.ru

Аннотация. В среду отечественной операционной системы реального времени семейства Багет порти-

рована свободно распространяемая библиотека open62541, реализующая протокол OPC UA. В статье приведен

обзор базовых понятий OPC UA, перечислены функциональные возможности портированной версии библио-

теки, описана модельная задача, приведен разбор ключевых фрагментов ее кода.

Ключевые слова: программируемый логический контроллер, протокол OPC UA, ОСРВ Ба-

гет

1. Введение

В ФГУ ФНЦ НИИСИ РАН ведется разра-

ботка линейки программируемых логических

контроллеров на отечественной электронной

компонентной базе (далее – «контроллеры се-

мейства Багет»). Контроллеры предназначены

для использования в автоматизированных систе-

мах управления технологическими процессами.

В состав программного обеспечения контролле-

ров входит программа «Библиотека поддержки

протокола OPC UA» (БПП OPC UA). Библиотека

может использоваться приложениями, функцио-

нирующими в среде операционной системы ре-

ального времени ОСРВ Багет 2.7 [1], для предо-

ставления или потребления данных посред-

ством OPC UA[2].

Стандарт OPC UA (Unified Archtecture), из-

вестный как IEC 62541, определяет средства ин-

формационного моделирования данных и ком-

муникационный протокол для промышленных

систем. Стандарт поддерживается некоммерче-

ским Консорциумом OPC Foundation. Первая

спецификация стандарта была представлена в

2006 г., а в 2012 г. стандарт был оформлен в рам-

ках Единого реестра европейских стандартов

[3]. К сильным сторонам стандарта, способству-

ющим его широкому применению, относятся:

аппаратно- и платформонезависимость, возмож-

ность построения на его основе сложных инфор-

мационных моделей, сервис-ориентированная

архитектура. Сервисы, специфицированные в

OPC UA, определяют информацию, которой

должны обмениваться приложения, но не кон-

кретный способ коммуникации по сети, а также

не конкретную реализацию посредством API.

Библиотека БПП OPC UA разработана на

базе открытого исходного кода свободно распро-

страняемого продукта open62541 [4]. Библио-

тека open62541 реализует стек бинарного прото-

кола OPC UA, а также набор функций (SDK) для

разработки на языке Си клиентских и серверных

приложений OPC UA.

В статье приведен обзор базовых понятий

OPC UA, перечислены функциональные воз-

можности БПП OPC UA, описана модельная за-

дача, приведен разбор ключевых фрагментов ее

кода.

Изложение материала в разделе 2 основано

на источниках [2],[5],[6].

2. Обзор OPC UA

2.1. Компоненты унифициро-

ванной архитектуры OPC UA
Унифицированная архитектура OPC UA

включает в себя:

- метамодель для информационного модели-

рования, которая сочетает объектно-ориентиро-

ванность с возможностью установления семан-

тических отношений между объектами;

- асинхронный протокол (построенный на

TCP, HTTP или SOAP), который определяет об-

мен сообщениями в рамках сессий, установлен-

ных над защищенными каналами связи;

- систему типов данных и схемы (двоичную

и основанную на XML) их кодирования в сооб-

щениях;

- набор из 37 стандартных сервисов для вза-

имодействия с серверными информационными

моделями.

Совокупность механизмов кодирования

(форматирования), защищенного канала и транс-

порта принято называть «стеком OPC UA».

12

Сервисы OPC UA - это интерфейс между сер-

верами (поставщиками информационной мо-

дели) и клиентами (потребителями этой инфор-

мационной модели). Сервисы используют стек

OPC UA для обмена данными между клиентом и

сервером.

2.2. Информационное моделиро-

вание в OPC UA

2.2.1. Информационная модель.

Объектная модель. Адресное

пространство
Информационная модель определяет, харак-

теризует и связывает информационные ресурсы

системы или набора систем, информацию о ко-

торых сервер предоставляет клиентам. Стандарт

OPC UA специфицирует структуру объектно-

ориентированных информационных моделей,

предоставляемых сервером, и протокол, с помо-

щью которого клиент может взаимодействовать

с информационной моделью по сети.

В информационной модели OPC UA объект

определяется как набор переменных, методов и

ссылок на другие объекты. Объекты OPC UA ти-

пизированы. Тип определяет не только струк-

туру объекта, но и его семантику. Для доступа к

объектам и их компонентам клиент вызывает

сервисы OPC UA. Сервисы обеспечивают чте-

ние и запись переменных, вызов методов, созда-

ние экземпляров и удаление объектов, подписку

на уведомления об изменениях и другие дей-

ствия с объектами.

В OPC UA определен стандартный способ

представления информационных моделей. Вве-

дено понятие «адресное пространство сервера»

(далее – «адресное пространство»). Адресное

пространство определено как «вся информация

(collection of information), которую сервер делает

видимой для своих клиентов» [2]. Информаци-

онная модель в адресном пространстве OPC UA

представляется как граф, состоящий из узлов и

ссылок между ними. Объект и его компоненты

образуют связный подграф.

2.2.2. Модель узла
Узел определяется как набор атрибутов и

ссылок. Атрибуты описывают узел, а ссылки

определяют его связи (отношения) с другими уз-

лами. В состав атрибутов входит обязательный

атрибут NodeId - уникальный идентификатор

узла внутри сервера.

2.2.3. Классы узлов
Узлы классифицированы. Определены 8

классов узлов:

-Variable (переменная);

-VariableType (тип переменной);

-Object (объект);

-ObjectType (тип объекта);

-ReferenceType (тип ссылки);

-DataType (тип данных);

-Method (метод);

-View (представление).

Каждый узел в адресном пространстве явля-

ется экземпляром одного из восьми классов.

Класс узла определяет состав набора его атрибу-

тов и ссылок. Разные экземпляры одного класса

имеют одинаковый набор атрибутов, разли-

чаться могут только их значения. Клиентам и

серверам не разрешается определять дополни-

тельные классы узлов или расширять список ат-

рибутов для класса узла.

Класс узла идентифицируется атрибутом

NodeClass:

typedef enum {

UA_NODECLASS_UNSPECIFIED = 0,

UA_NODECLASS_OBJECT = 1,

UA_NODECLASS_VARIABLE = 2,

UA_NODECLASS_METHOD = 4,

UA_NODECLASS_OBJECTTYPE = 8,

UA_NODECLASS_VARIABLETYPE = 16,

UA_NODECLASS_REFERENCETYPE = 32,

UA_NODECLASS_DATATYPE = 64,

UA_NODECLASS_VIEW = 128,

UA_NODECLASS_FORCE32BIT = 0x7fffffff

} UA_NodeClass;

Примечание – Здесь и далее для обозначения

стандартных констант, атрибутов, типов данных

и др. используются их имена из исходных тек-

стов open62541.

2.2.4. Атрибуты
Атрибуты – это элементарные компоненты

классов узлов. Они не видны напрямую в адрес-

ном пространстве, но их значения для конкрет-

ного узла могут быть запрошены или измены

клиентом посредством сервисов атрибутов

(Atribute Service Set).

В спецификациях [2] определение атрибута

включает в себя поля: идентификатор атрибута,

имя, описание, типа данных и индикатор «обяза-

тельного/опциональный».

Каждому атрибуту присвоен числовой иден-

тификатор UA_AttributeId. Всего в OPC UA

определено 27 атрибутов с уникальными значе-

ниями идентификатора UA_AttributeId. В файле

open62541/common.h определен тип данных

UA_AttributeId (перечисление). Семантика боль-

шинства атрибутов будет описана при рассмот-

рении классов узлов в разделе 2.2.6 настоящей

статьи.

Набор атрибутов, определенный для класса

узла, не может расширяться клиентами или сер-

верами. При создании узла в адресном простран-

стве необходимо указать значения обязательных

13

атрибутов его класса.

Следующие 7 атрибутов используются в

определениях всех классов узлов (первые 4 обя-

зательны, последние 3 – опциональны):

- NodeId (тип данных NodeId) - иденти-фика-

тор узла;

- NodeClass (тип данных NodeClass) – иден-

тификатор класса узла);

- BrowseName (тип данных QualifiedName) –

имя узла для сервера (не локализовано);

- DisplayName (тип данных LocalizedText) –

имя узла для клиента (локализовано);

- Description (тип данных LocalizedText) –

текстовое описание узла;

- WriteMask (тип данныхUint32) – специфи-

цирует атрибуты, которые доступны для моди-

фикации клиентом;

- UserWriteMask (тип данныхUint32) – специ-

фицирует атрибуты, которые доступны для мо-

дификации пользователем, подключенным в те-

кущий момент.

Ниже приведены описания наборов атрибу-

тов (из файла open62541/types.h), специфичных

для отдельных классов узлов в БПП OPC UA:

typedef struct {

UA_UInt32 specifiedAttributes;

UA_LocalizedTextdisplayName;

UA_LocalizedText description;

UA_UInt32 writeMask;

UA_UInt32 userWriteMask;

UA_BooleanisAbstract;

UA_Boolean symmetric;

UA_LocalizedTextinverseName;

} UA_ReferenceTypeAttributes;

typedef struct {

UA_UInt32 specifiedAttributes;

UA_LocalizedTextdisplayName;

UA_LocalizedText description;

 UA_UInt32 writeMask;

UA_UInt32 userWriteMask;

UA_BooleanisAbstract;

} UA_ObjectTypeAttributes;

typedef struct {

UA_UInt32 specifiedAttributes;

UA_LocalizedTextdisplayName;

UA_LocalizedText description;

UA_UInt32 writeMask;

UA_UInt32 userWriteMask;

UA_ByteeventNotifier;

} UA_ObjectAttributes;

typedef struct {

UA_UInt32 specifiedAttributes;

UA_LocalizedTextdisplayName;

UA_LocalizedText description;

UA_UInt32 writeMask;

UA_UInt32 userWriteMask;

UA_Variant value;

UA_NodeIddataType;

UA_Int32 valueRank;

size_tarrayDimensionsSize;

UA_UInt32 *arrayDimensions;

UA_ByteaccessLevel;

UA_ByteuserAccessLevel;

UA_DoubleminimumSamplingInterval;

UA_Booleanhistorizing;

} UA_VariableAttributes;

typedef struct {

UA_UInt32 specifiedAttributes;

UA_LocalizedTextdisplayName;

UA_LocalizedText description;

UA_UInt32 writeMask;

UA_UInt32 userWriteMask;

UA_Variant value;

UA_NodeIddataType;

UA_Int32 valueRank;

size_t arrayDimensionsSize;

UA_UInt32 *arrayDimensions;

UA_BooleanisAbstract;

} UA_VariableTypeAttributes;

typedef struct {

UA_UInt32 specifiedAttributes;

UA_LocalizedTextdisplayName;

UA_LocalizedText description;

UA_UInt32 writeMask;

UA_UInt32 userWriteMask;

UA_Boolean executable;

UA_BooleanuserExecutable;

} UA_MethodAttributes;

2.2.5. Ссылки.
Ссылки используются для определения отно-

шений узлов друг с другом. Тип ссылки является

экземпляром класса узлов ReferenceType.

Ссылка представляет собой тройку вида

<идентификатор узла-источника, идентифика-

тор узла типа (ReferenceType), идентификатор

узла-цели>.

Примером ссылки между узлами является

ссылка типа «hasTypeDefinition» между узлами

классов «переменная» и «тип переменной».

2.2.6. Определения классов уз-

лов

2.2.6.1. Переменные

(VariableNode)
Переменные используются для представле-

ния содержимого объекта, его реальных данных.

Для этого класса специфичны следующие атри-

буты:

14

- value (тип данных UA_Variant) – обязатель-

ный. Фактическое значение переменной. Тип

данных значения определяется атрибутами

DataType, ValueRank и ArrayDimensions;

- dataType (тип данных UA_NodeId) –обяза-

тельный. Идентификатор узла класса DataType;

- valueRank (тип данных UA_Int32) –обяза-

тельный. Указавает, является ли переменная мас-

сивом. Если является, то указывает число раз-

мерностей;

- arrayDimensions (тип данных UA_UInt32*) -

опциональный. Для массива указывает число

элементов по каждой размерности;

- accessLevel (тип данных UA_Byte) –обяза-

тельный. Битовая маска, указывающая, до-

ступны ли на чтение и запись текущее значение

и его история;

- userAccessLevel (тип данных UA_Byte) –

обязательный.Битовая маска, указывающая, до-

ступны ли на чтение и запись текущее значение

и его история с учетом прав пользователя;

- minimumSamplingInterval (тип данных

UA_Double) - опциональный. Минимальное

время, за которое допустимо обновление значе-

ния переменной на сервере;

- historizing (тип данных UA_Boolean) – обя-

зательный. Указывает, ведется ли сбор историче-

ских данных в текущий момент.

Определены два вида переменных: свойства

(Properties) и переменные данных

(DataVariables). Свойства связаны с родитель-

ским узлом ссылкой типа "hasProperty" и не мо-

гут иметь дочерних узлов. Переменные данных

могут иметь в качестве дочерних узлов свойства

(тип ссылки "hasProperty") и другие переменные

данных (тип ссылки "hasComponent").

2.2.6.2. Типы переменных

(VariableTypeNode)
Узлы класса VariableNode создаются как до-

черние по отношению к узлам класса

VariableTypesNode (ссылка "hasType-

Definition"). Родительские узлы определяют тип

создаваемых переменных и накладывают огра-

ничения на допустимые значения атрибутов

dataType;valueRank, arrayDimensions для экзем-

пляров переменных. Кроме того, при создании

экземпляра переменной определенного типа до-

чернему узлу передается семантическая инфор-

мация от родителя.

2.2.6.3. Объекты (ObjectNode)
Объекты используются для представления

систем, компонентов систем, объектов реаль-

ного мира и программных объектов. Объекты яв-

ляются экземплярами типа объекта и могут со-

держать переменные, методы и другие объекты.

2.2.6.4. Типы объектов

(ObjectTypeNode)
Класс узла ObjectType используется для

представления типа объектов в адресном про-

странстве сервера. Узлы класса ObjectTypes ана-

логичны классам в объектно-ориентированных

языках. Для класса узла ObjectType специфичен

обязательный атрибут isAbstract (тип данных

UA_Boolean). Он указывает, является ли тип аб-

страктным. Абстрактные типы не могут порож-

дать экземпляров объектов.

Пример типа объекта – FolderType (тип

«папка»). Объекты этого типа используются для

представления адресного пространства в виде

иерархии узлов. На рис. 1 изображен встроен-

ный набор папок, задающий предопределенную

структуру адресного пространства.

Рис.1 Стандартная структура адресного пространства

([2], Part 5)

2.2.6.5. Типы ссылок

(ReferenceTypeNode)
Каждая ссылка между двумя узлами имеет

тип, который определяет семантику отношения.

Тип ссылки определяется узлом класса

ReferenceType. Этот узел является родительским

при создании ссылки.

Стандарт OPC UA определяет набор встроен-

ных узлов ReferenceTypes. Их иерархия показана

на рисунке 2 (стрелки указывают на отношение

«hasSubType»). Полное описание семантики

каждого типа ReferenceType содержится в части

3 спецификации OPC UA. Абстрактные типы

ReferenceTypes не могут использоваться в реаль-

ных ссылках и применяются только для структу-

рирования иерархии. Симметричные ссылки

имеют одинаковый смысл для исходного и целе-

вого узлов.

15

Рис. 2. Иерархия стандартных типов ссылки OPC UA (рисунок заимствован из [4])

2.2.6.6. Типы данных

(DataTypeNode)
Узлы класса DataTypes представляют про-

стые и структурированные типы данных. Типы

DataTypes могут включать в себя массивы, но

они всегда описывают структуру одного экзем-

пляра. Абстрактные типы DataTypes (например,

Number) не могут быть типом фактических зна-

чений. Они используются для ограничения зна-

чений набором дочерних DataTypes (например,

UInt32).

2.2.6.7. Методы (MethodNode)
Методы определяют функции, которые вызы-

ваются с помощью сервиса Call. Узел

MethodNode может иметь специальные свойства

для определения входных и выходных аргумен-

тов. Эти свойства моделируются как дочерние

узлы класса Variable со ссылкой hasProperty. Ат-

рибут QualifiedName для этих переменных при-

нимает значения (0, "InputArguments"), и (0,

"OutputArguments") соответственно (стандарт-

ные имена, определенные в системном про-

странстве имен). Более подробно о простран-

ствах имен написано в разделе 2.2.7 настоящей

статьи.

Входные и выходные аргументы описыва-

ются как массив данных типа UA_Argument

(стандартный тип OPC UA).

На один и тот же узел MethodNode могут ссы-

латься несколько объектов и типов объектов. В

связи с этим запрос сервиса Call содержит иден-

тификаторы NodeId и для вызываемого метода, и

для объекта, предоставляющего контекст.

Следующие два обязательных атрибута с ти-

пом данных UA_Boolean специфичны для

класса узлов MethodNode: executable,

userExecutable. Они показывают, доступен ли

метод для вызова в текущий момент.

2.2.6.8. Представления

(ViewNode)
Каждое представление определяет подмно-

жество узлов в адресном пространстве. Пред-

ставления можно использовать при просмотре

информационной модели, чтобы сосредото-

читься только на интересующем пользователей

подмножестве узлов и ссылок. Узлы класса

ViewNodes можно создавать и взаимодейство-

вать с ними, но их просмотр с помощью сервиса

Browse в настоящее время не поддерживается в

open62541.

2.2.7. Идентификация узлов в

адресном пространстве. Тип

данных UA_NodeId. Простран-

ства имен (NameSpases)
Каждый узел в адресном пространстве имеет

уникальный идентификатор в рамках сервера.

Идентификаторы имеют стандартный тип дан-

ных UA_NodeId. Приведем определение этого

типа из файла open62541/types.h:

enum UA_NodeIdType {

UA_NODEIDTYPE_NUMERIC = 0, /* In the

binary encoding, this can also become 1 or 2 (two-

byte and four-byte encoding of small numeric no-

deids) */

 UA_NODEIDTYPE_STRING = 3,

 UA_NODEIDTYPE_GUID = 4,

 UA_NODEIDTYPE_BYTESTRING = 5

};

typedef struct {

 UA_UInt16 namespaceIndex;

 enum UA_NodeIdType identifierType;

 union {

 UA_UInt32 numeric;

 UA_String string;

 UA_Guid guid;

 UA_ByteString byteString;

16

 } identifier;} UA_NodeId;

Поле namespaceIndex имеет следующий

смысл. С каждым экземпляром сервера связано

не менее двух пространств имен, из которых мо-

гут выбираться идентификаторы. URI этих про-

странств регистрируются в массиве

NamespaceArray. В пространстве имен каждое

имя уникально. Одинаковые имена из разных

пространств должны относиться к разным уз-

лам. Поле namespaceIndex указывает индекс про-

странства имен идентификатора в массиве

NamespaceArray. Индекс 0 зарезервирован для

предопределенного пространства имен от OPC

Foundation (далее – «системное пространство

имен». Индекс 1 определяет пространство имен

сервера. Существуют и другие пространства

имен, которые могут быть зарегистрированы в

массиве.

В файле open62541/types.h определены static

UA_INLINE - функции для упрощения создания

идентификатора узла:

- static UA_INLINE UA_NodeId UA_NO-

DEID_NUMERIC(UA_UInt16 nsIndex,

UA_UInt32 identifier);

- static UA_INLINE UA_NodeId UA_NO-

DEID_STRING(UA_UInt16 nsIndex,

char *chars).

В файле open62541/ns0ids.h приведены иден-

тификаторы всех предопределенных узлов ад-

ресного пространства.

2.3 Концепция коммуникацион-

ного протокола OPC UA

2.3.1 Транспортный уровень
Стандарт OPC UA определяет коммуника-

цию на основе транспортных механизмов TCP,

HTTP и SOAP, определенную в стандарте. Про-

граммная реализация open62541 использует дво-

ичный протоколе на основе TCP, поскольку он

является наиболее распространенным транс-

портным уровнем для OPC UA.

TCP-соединение открывается для соответ-

ствующего имени хоста и порта. При открытии

соединения устанавливаются основные наст-

ройки соединения, такие как максимальная

длина сообщения.

2.3.2 Протокол «клиент/сервер»
В OPC UA определены два способа обмена

данными между серверами и клиентами: «кли-

ент/сервер» (Client/Server) и «Издатель/

Подписчик» (Pub/Sub). Мы ограничимся рас-

смотрением классической технологии «кли-

ент/сервер», основанной на принципе «За-

прос/Ответ». Клиенты отправляют запросы на

сервер. Сервер отправляет ответы только на со-

ответствующие запросы.

Протокол OPC UA допускает асинхронные

ответы. Сервер не должен немедленно отвечать

на запросы, и ответы могут отправляться в дру-

гом порядке. Такая необходимость возникает в

случаях, когда требуется значимое время для об-

работки запроса (например, при вызове метода

или при считывании данных с датчика с задерж-

кой). Для подобных случаев стандарт OPC UA

определяет в рамках клиент-серверного прото-

кола технологию «подписки» (Subscrip-tions).

Подписки реализуются с помощью специаль-

ных запросов, где ответ задерживается до публи-

кации уведомления.

Примечание − Технологию подписки, под-

держиваемую в рамках клиент-серверного про-

токола OPC UA, следует отличать от технологии

PubSub, определенной в части 14 стандарта.

PubSub – это расширение концепции подписки с

целью интеграции коммуникации «многие ко

многим» с OPC UA. PubSub не использует про-

токол клиент-сервер. Подписки реализуют инди-

видуальную связь клиента с сервером.

Клиент-серверное соединение для двоичного

протокола OPC UA состоит из трех вложенных

уровней: TCP-соединение с сохранением состо-

яния, безопасный канал связи (Secure-Channel),

сеанс связи (Session, далее – «сессия»).

2.3.3 Настройки безопасности.

Конечные точки (endpoint)
Чтобы подключиться к серверу, клиенту

необходимо знать сетевой адрес, протокол и

настройки безопасности.

Информация, необходимая для установления

соединения между клиентом и сервером, хра-

нится в так называемой конечной точке сервера

(endpoint). Сервер может предоставить не-

сколько конечных точек. Конечная точка пред-

ставляет собой набор следующих данных:

- URL-адрес конечной точки (протокол и се-

тевой адрес);

- политика безопасности (название набора

алгоритмов безопасности и длина ключа шифро-

вания);

- SecurityMode (уровень безопасности для об-

мена сообщениями);

- тип аутентификации пользователя.

Сервис GetEndpoints возвращает список до-

ступных конечных точек. Этот сервис можно

вызвать без открытия сессии и без шифрования

сообщений. Это позволяет клиентам сначала об-

наружить доступные конечные точки, а затем ис-

пользовать соответствующую политику безопас-

ности, которая может потребоваться для откры-

тия сессии.

17

2.3.4 Безопасный канал связи

(SecureChannel)
Безопасные каналы SecureChannels созда-

ются над TCP-соединением. Канал

SecureChannel устанавливается по запросу

OpenSecure-Channel.

Безопасный канал характеризуется уровнем

безопасности передачи сообщений

(SecurityMode) и политикой безопасности

(Security Policy).

Определены три допустимых уровня без-

опасности для канала SecureChannel: None, Sign,

SignAndEncrypt.

При уровнях безопасности с подписью или

шифрованием (Sign или SignAndEncrypt) сооб-

щения шифруются с использованием асиммет-

ричного алгоритма шифрования (криптография

с открытым ключом). В рамках сервиса

OpenSecureChannel клиент и сервер устанавли-

вают общий секрет по изначально незащищен-

ному каналу. Для последующих сообщений об-

щий секрет используется для симметричного

шифрования, которое выполняется намного

быстрее.

Различные политики безопасности, специфи-

цированные в части 7 стандарта OPC UA, опре-

деляют алгоритмы для асимметричного и сим-

метричного шифрования, длины ключей шифро-

вания, хэш-функции для подписи сообщений и т.

д. Примеры политик безопасности: None,

Basic256Sha256.

2.3.5 Сессия (Session)
Сессия создается над каналом Secure-

Channel. Сессия гарантирует пользователям воз-

можность аутентификации без отправки своих

учетных данных в открытом виде.

Определены следующие механизмы аутенти-

фикации: анонимный вход, имя пользователя/па-

роль, сертификаты Kerberos и x509.

Для установления сессии используются два

сервиса: CreateSession и ActivateSession. Сервис

ActivateSession может использоваться для пере-

ключения существующей сессии на другой ка-

нал SecureChannel. Такое переключение позво-

ляет повторно использовать существующую сес-

сию при разрыве соединения.

2.3.6 Структура сообщения
Сообщение протокола OPC UA состоит из за-

головка и тела.

Структура заголовка одинакова для всех со-

общений и определяется стандартным типом

данных OPC UA. Заголовок сообщения содер-

жит базовую информацию, включая длину сооб-

щения, идентификаторы сессии и канала

SecureChannel, а также данные для связи запроса

с соответствующим ответом. Специальное поле

«Chunking» («разбиение на фрагменты») опреде-

ляет способ разделения и повторной сборки со-

общений, длина которых превышает максималь-

ный размер сетевого пакета.

Структура тела сообщения зависит от того,

какой сервис его передает, и от того, является ли

оно запросом или ответом. Для каждого сервиса

в системе типов OPC UA определены типы дан-

ных, соответствующие его запросу и ответу.

Текст сообщения начинается с идентификатора

типа данных, затем следует основная полезная

нагрузка сообщения.

Примечание − Определения структур и иден-

тификаторов типов данных, соответствующих

запросам и ответам сервисов, содержатся в

файле open62541/types_generated.h.

3 Общая характеристика БПП

OPC UA

3.1 Стек OPC UA
Стек БПП OPC UA унаследован от библио-

теки open62541 и обладает следующими харак-

теристиками [4]:

- транспортные механизмы реализованы в со-

ответствии с профилем UA-TCP UA-SCUA-

Binary. Этот профиль определяет комбинацию

сетевого протокола, протокола безопасности и

кодирования сообщений, оптимизированную

для низкого потребления ресурсов и высокой

производительности. Он включает в себя сете-

вой протокол на основе TCP UA-TCP 1.0, бинар-

ный протокол безопасности UA-Secure-

Conversation 1.0 и бинарное кодирование сооб-

щений UA-Binary 1.0;

- поддерживаются следующие виды шифро-

вания сообщений: None, Basic128Rsa15,

Basic256, Basic256Sha 256, Aes128Sha256-

RsaOaep;

- поддерживаются следующие виды аутенти-

фикации: Anonymous, User Name Password, X509

Certificate.

3.2 SDK для разработки сервер-

ных приложений
В БПП OPC UA поддерживаются следующие

возможности сервера:

- поддержка всех типов узлов OPC UA;

- контроль доступа для отдельных узлов;

- поддержка создания информационных мо-

делей на стороне сервера на основе стандартных

определений XML (наборов узлов);

- поддержка добавления и удаления узлов и

ссылок во время выполнения;

- поддержка наследования и создания экзем-

пляров типов объектов и переменных (пользова-

тельский конструктор/деструктор, создание эк-

земпляров дочерних узлов);

- поддержка подписок (Subscriptions)/

https://www.open62541.org/doc/master/core_concepts.html#structure-of-a-protocol-message

18

контролируемых элементов (MonitoredItems)

(уведомления при изменении данных).

В дистрибутив БПП OPC UA входит пример

сервера (server_ctt), созданный с использова-

нием open62541 v1.0, реализованный в соответ-

ствии с профилем OPC Foundation «Micro

Embedded Device Server» ([2]: Part 7: Profiles).

Профиль поддерживает следующие возможно-

сти, специфицированные в стандарте OPC UA:

связь клиент/сервер, подписки, вызовы методов

и безопасность с политиками безопасности

«Basic128Rsa15», «Basic256», «Basic256-

Sha256», а также вызов методов и управление уз-

лами.

3.3 SDK для разработки клиент-

ских приложений
SDK для разработки клиентских приложений

позволяет реализовывать следующие сервисы:

- DiscoveryServiceSet – группа сервисов обна-

ружения доступных серверов в составе:

FindServers, GetEndpoints,RegisterServer;

- SecureChannelServiceSet – группа сервисов

формирования безопасного канала в составе:

OpenSecureChannel, CloseSecureChannel;

- SessionServiceSet – группа сервисов форми-

рования сессии в составе: Session Service Set,

CloseSession, .ActivateSession;

- Node Management Service Set – группа сер-

висов управления узлами в составе: AddNodes,

AddReferences, DeleteNodes, DeleteReferences;

- ViewServiceSet – группа сервисов работы с

представлениямивсоставе: BrowseNext, Trans-

lateBrowsePathsToNodeIds, RegisterNodes, Un-

registerNodes;

- AttributeServiceSet – группа сервисов управ-

ления атрибутами в составе: Read,Write;

- MethodServiceSet-группа сервисов вызова

методов в составе: Call;

- MonitoredItemsServiceSet – группа сервисов

для работы с отслеживаемыми объектами (поз-

воляет клиенту создавать отслеживаемые объ-

екты и привязывать их к переменным, атрибутам

или событиям) в составе: Create-MonitoredItems,

DeleteMonitoredItems, Modify-MonitoredItems,

SetMonitoringMode, SetTrig-gering;

- Subscription Service Set – группа сервисов

управления подписками в составе: CreateSub-

scription, ModifySubscription, Set-Publishing-

Mode, Publish, Republish, DeleteSubscriptions,

TransferSubscriptions.

Примечание − Выше перечислены только те

сервисы из состава библиотеки open62541, для

которых на текущий момент подтверждена рабо-

тоспособность в составе БПП OPC UA.

4 Описание модельной задачи
Задача выполняется на программируемом ло-

гическом контроллере, содержащем в своем со-

ставе процессорный модуль и два модуля ввода-

вывода: для дискретных и аналоговых сигналов

соответственно. Модули ввода-вывода соеди-

нены с процессорным модулем шиной Modbus.

Процессорный модуль функционирует под

управлением операционной системы ОСРВ Ба-

гет 2.7.

На процессорном модуле функционирует

сервер OPC UA, разработанный с помощью

БПП OPC UA. В адресном пространстве сервера

создано два объекта. Каждый объект содержит

по 4 переменных. Значения переменных обнов-

ляются с частотой 100 мсек. Объект 1 (DI) при-

нимает данные с модуля дискретных сигналов,

объект 2 (AI) – с модуля аналоговых сигналов.

Данные объекта 1 получает OPC UA -клиент,

функционирующий на инструментальной ЭВМ

с микропроцессорной архитектурой х86 под

управлением операционной системы семейства

Linux. В качестве клиента OPC UA используется

свободно распространяемая программа

UAExpert с графическим интерфейсом (разра-

ботка фирмы UnifiedAutomation). Клиент полу-

чает данные с ПЛК путем синхронных запросов

по технологии «клиент-сервер».

Данные объекта 2 получает OPC UA -клиент,

разработанный на основе Библиотеки OPC UA,

функционирующий локально на процессорном

модуле ПЛК. Клиент взаимодействует с серве-

ром OPC UA по протоколу TCP. Используется

соединение по защищенному каналу с режимом

подписи и шифрования. Самоподписанный сер-

тификат и закрытый ключ шифрования сгенери-

рованы посредством программы Open-SSL. Кли-

ент получает данные по подписке.

Отображение адресного пространства сер-

вера в окне программы UAExpert приведено на

рис. 3.

Рис.3 Отображение адресного пространства сервера

в окне программы UAExpert.

Ключевые фрагменты кода, использованные

при разработке сервера на основе БПП OPC UA,

прокомментированы в разделе 8 настоящей ста-

тьи.

19

Примечание − Применение сервисов

Subscriptions, MonitoredItems реализовано в кли-

ентской части приложения и не комментируется

в настоящей статье.

5 Ключевые фрагменты кода

 модельной задачи

5.1 Структура серверного

 приложения
Разработано серверное приложение на ос-

нове API БПП OPC UA, которое:

- конфигурирует и запускает сервер OPC UA;

- создает объекты и переменные адресного

пространства;

- периодически обновляет в реальном вре-

мени значения переменных.

За основу был взят исходный текст примера

examples/server_inheritance.c из дистрибутива

БПП OPC UA.

Программа, реализующая серверное прило-

жение, структурирована следующим образом.

Головная функция int main(void):

- создает и инициализирует конфигурацию

сервера в соответствии с потребностями задачи;

- вызывает пользовательскую функцию

createCustomInheritance, которая создает инфор-

мационную модель задачи в адресном простран-

стве сервера;

- привязывает к конфигурации сервера поль-

зовательскую Callback-функцию testCallback, ко-

торая устанавливает связь переменных с внеш-

ними источниками данных;

- запускает сервер;

- по завершении работы сервера освобождает

ресурсы.

5.2 Конфигурирование сервера
Конфигурационные данные сервера OPC UA

(далее – «конфигурация») используются при

инициализации сервера. Структура конфигура-

ции определена в заголовочном файле

open62541/server.h: struct UA_ServerConfig {}.

Примеры полей структуры UA_ServerConfig:

UA_ApplicationDescription applicationDe-

scription;

– описание приложения;

 UA_ByteString serverCertificate;

– сертификат сервера,

const UA_DataTypeArray

*customDataTypes;

– массив пользовательских типов данных;

size_t securityPoliciesSize;

UA_SecurityPolicy* securityPolicies;

– массив URI поддерживаемых политик без-

опасности;

size_t endpointsSize;

UA_EndpointDescription *endpoints;

– список конечных точек;

UA_UInt16 maxSecureChannels;

UA_UInt32 maxSecurityTokenLifetime; // in

ms

– ограничения для безопасных каналов;

UA_UInt16 maxSessions;

UA_Double maxSessionTimeout; /* in ms */

– ограничения для сессий.

Традиционно применяется следующий спо-

соб создания конфигурации сервера:

- сначала создать структуру конфигурации и

инициализировать ее по умолчанию;

- модифицировать те поля, которые важны в

конкретной задаче (например, добавить серти-

фикат сервера);

- инициализировать сервер с использо-ва-

нием отредактированной конфигурации.

В головной функции main() серверного при-

ложения конфигурация сервера сформирована в

результате следующих действий:

1) определены и инициализированы нулями

структуры данных для сертификата, закрытого

ключа и для конфигурации сервера:

UA_ByteString certificate, UA_ByteString

privateKey, UA_ServerConfig config_,

*config=&config_;

2) объявлен и инициализирован статический

массив реквизитов доступа static

UA_UsernamePasswordLogin logins[3];

3) сертификат и закрытый ключ загружены из

файловой системы tar;

4) структура конфигурации сервера запол-

нена значениями по умолчанию с добавлением

сертификата, закрытого ключа и списка реквизи-

тов доступа посредством API-функции

UA_ServerConfig_setDefaultWithSecurityPolicies

(). Списки доверенных и отзываемых сертифи-

катов оставлены пустыми:

retval =

UA_ServerConfig_setDefaultWithSecurityPoli-

cies(config, 4840,

&certificate, &privateKey,

trustList, trustListSize,

issuerList, issuerListSize,

revocationList, revocationListSize);

(4840 – порт, используемый по умолчанию

для TCP-соединения сервера OPC UA);

5) в поле Description URI приложения приве-

дено в соответствие с данными сертификата:

 config->applicationDescription.applicationUri

 =

UA_String_from-

Chars("urn:open62541.server.application");

6) установлен режим пользовательского до-

ступа по логину и паролю (вызов API-функции

UA_AccessControl_default). Cписок пользовате-

лей и паролей указан в массиве logins, передава-

емом среди аргументов функции:

config->accessControl.clear(&config->

https://github.com/open62541/open62541/blob/master/examples/server_inheritance.c

20

accessControl);

retval = UA_AccessControl_default(config,

false, NULL,&config->securityPolicies[config->

securityPoliciesSize-1].policyUri, 3, logins);

7) создан экземпляр сервера с отредактиро-

ванной конфигурацией:

UA_Server *server =

UA_Server_newWithConfig(config);

5.3 Создание информационной

модели в адресном простран-

стве

 сервера
Функция static void createCustomInheritance

(UA_Server *server) создает в адресном про-

странстве следующие узлы:

- объекты типа «папка» с именами DI, AI как

компоненты системной папки Objectcs;

- по четыре компонента каждого объекта: пе-

ременные с именами DI0, DI1,DI2, DI3 с типом

данных UA_BOOLEAN (AI0, AI1,AI2, AI3 с ти-

пом данных UA_INT32) с доступом по чтению и

записи;

- ссылки типа «hasComponent» между объек-

тами и их компонентами.

Для создания объектов и переменных вызы-

ваются функции:

 UA_Server_addObjectNode();

 UA_Server_addVariableNode().

При выполнении этих функции создаются со-

ответствующие ссылки.

Вызову функций, создающих узел, предше-

ствует создание и инициализация структур,

определяющих атрибуты узла:

 UA_ObjectTypeAttributes otAttr;

 UA_ObjectAttributes oAttr;

 UA_VariableAttributes vAttr;

Создается структура для идентификатора бу-

дущего узла:

UA_NodeId df_id;

Структуры атрибутов будущего узла инициа-

лизируются значениями по умолчанию, затем

редактируются поля «description» и

«displayName», например:

oAttr = UA_ObjectAttributes_default;

oAttr.description =

UA_LOCALIZEDTEXT("en-US", "DI");

oAttr.displayName =

UA_LOCALIZEDTEXT("en-US", "DI");

Для переменных также редактируются атри-

буты доступа и типа данных, например:

vAttr.accessLevel =

 UA_ACCESSLEVELMASK_READ |

UA_ACCESSLEVELMASK_WRITE;

vAttr.dataType

=UA_TYPES[UA_TYPES_UINT32].typeId;

Рассмотрим параметры функции

UA_Server_addObjectNode() на примере ее вы-

зова для создания объекта DI.

Интерфейс функции:

UA_StatusCode UA_Server_addObjectNode

(

UA_Server *server,

constUA_NodeIdrequestedNewNodeId,

constUA_NodeIdparentNodeId,

constUA_NodeIdreferenceTypeId,

constUA_QualifiedNamebrowseName,

constUA_NodeIdtypeDefinition,

constUA_ObjectAttributesattr,

void *nodeContext,

UA_NodeId *outNewNodeId

)

Параметры:

- UA_Server *server – сервер,

- constUA_NodeIdrequestedNewNodeId –

идентификатор создаваемого узла. Идентифика-

тор можно указать явно или запросить новое зна-

чение у сервера. Если в качестве параметра ука-

зать числовой NodeId с числовым идентификато-

ром 0, то будет выбран случайный свободный

числовой NodeId в соответствующем простран-

стве имен. В примере:

UA_NODEID_NUMERIC(1,0) – запрос на выбор

свободного числового значения в пространстве

имен сервера;

- constUA_NodeIdparentNodeId –идентифика-

тор родительского узла. В примере:

UA_NODEID_NUMERIC(0,

UA_NS0ID_OBJECTSFOLDER) – числовой

идентификатор папки Objects в системном про-

странстве имен;

- constUA_NodeIdreferenceTypeId – иденти-

фикатор типа ссылки родительского узла на со-

здаваемый узел. В примере:

UA_NODEID_NUMERIC(0,

UA_NS0ID_HASCOMPONENT) – числовой

идентификатор типа ссылки « hasComponent» в

системном пространстве имен;

- constUA_QualifiedNamebrowseName – атри-

бут « browseName» создаваемого узла. В при-

мере: UA_QUALIFIEDNAME(1, "DI") – имя

"DI" в пространстве имен сервера;

constUA_NodeIdtypeDefinition – идентифика-

тор типа создаваемого объекта. В примере:

UA_NODEID_NUMERIC(0,UA_NS0ID_FOL

DERTYPE) – идентификатор стандартного типа

объектов «папка» в системном пространстве

имен;

- constUA_ObjectAttributes attr – атрибуты со-

здаваемого узла. В примере передается ранее со-

зданная, инициализированная и отредактирован-

ная структура oAttr;

- void *nodeContext – контекст узла (пользо-

вательские данные, предназначенные для экспо-

нирования в адресном пространстве). В примере

21

передается значение NULL;

- UA_NodeId *outNewNodeId - указатель на

структуру идентификатора созданного узла.

Идентификатор будет записан по этому указа-

телю. В примере передается указатель на ранее

созданную структуру (&df_id).

Параметры функции UA_Server_addVariable-

Node(), использованной в примере для создания

узлов переменных, не отличаются по составу и

смыслу от параметров функции UA_Server_-

addObjectNode(). Отметим только отличия в спо-

собе их задания при вызове функции в рассмат-

риваемом примере:

- идентификатор создаваемого узла указы-

вался явно как числовой идентификатор в про-

странстве имен сервера, например:

UA_NODEID_NUMERIC(1, 30300);

- в качестве идентификатора родительского

узла указывалась структура df_id, в которую был

записан идентификатор родительского объекта

при его создании;

- в качестве идентификатора типа создавае-

мого объекта был указан идентификатор базо-

вого типа переменной из системного адресного

пространства: UA_NODEID_NUMERIC(0,

UA_NS0ID_BASEDATAVARIABLETYPE);

- в качестве указателя на структуру иденти-

фикатора созданного узла указан NULL (возвра-

щать идентификатор не нужно, поскольку он за-

дан явно).

5.4 Связь переменных с источ-

никами внешних данных
Сервер OPC UA предоставляет возможность

организовать выполнение с заданной периодич-

ностью пользовательских функций с прототи-

пом:

typedef void(*UA_ServerCallback)

(UA_Server*server,void*data);

Это свойство использовано в серверном при-

ложении для организации асинхронного обнов-

ления значений переменных адресного про-

странства сервера дискретными и аналоговыми

сигналами, считываемыми c модулей ввода-вы-

вода по шине Modbus.

Разработана пользовательская функция

static void

testCallback(UA_Server *server, void *data),

которая:

- считывает значения сигналов по шине

Modbus средствами ОСРВ Багет 2.7;

- преобразует их тип и копирует значения в

переменные адресного пространства с использо-

ванием функций БПП OPC UA

UA_Variant_setScalar(), UA_Server_writeValue().

Головная функция серверного приложения

main() содержит вызов функции БПП OPC UA

UA_Server_addRepeatedCallback:

UA_Server_addRepeatedCallback(server, test-

Callback, NULL, 100, NULL);

Этот вызов обеспечивает периодическое вы-

полнение функции testCallback с интервалом 100

мсек.

6 Заключение
Модельная задача продемонстрировала рабо-

тоспособность библиотеки поддержки прото-

кола OPC UA на отечественном оборудовании

под управлением отечественной операционной

системы реального времени. Представляется

перспективным развивать эту библиотеку. В

частности, желательно расширить состав под-

держиваемых сервисов, дополнив его сервисами

доступа к историческим данным и поддержкой

событий.

Публикация выполнена в рамках государ-

ственного задания по проведению фундамен-

тальных исследований по теме «Создание и реа-

лизация доверенных систем искусственного ин-

теллекта, основанных на новых математических

и алгоритмических методах, моделях быстрых

вычислений, реализуемых на отечественных вы-

числительных системах» (FNEF-2024-0001)».

OPC UA Protocol Support Library for

Programmable Logic Controllers of the

 Baguette Family

T. K. Gringauz, D. V. Yarikov

Abstract. The open62541 freely distributed library implementing the OPC UA protocol has been ported to the

environment of the domestic real-time operating system of the Baget family. The article provides an overview of the

basic concepts of OPC UA, lists the functional capabilities of the ported version of the library, describes a model task,

and provides an analysis of key fragments of its code.

22

Keywords: programmable logic controller, OPC UA protocol, RTOS Baget

Литература

1. А.Н. Годунов, В.А. Солдатов. Операционные системы семейства Багет (сходства, отличия и

перспективы). «Программирование», т.40 (2014), № 5, 68 – 76.

2. OPC Unified Architecture Specification. Release 1.04. November 22, 2017. URL: https://refer-

ence.opcfoundation.org/ (дата обращения – 31.10.2024).

3. А.А. Титаев. Промышленные сети: учебное пособие, Екатеринбург, издательство Уральского

университета, 2020.

4. open62541 Documentation. Release 1.0.5-1-g982f0796. January 05, 2021. URL:

https://www.open62541.org/doc/open62541-1.0.pdf (дата обращения – 31.10.2024).

5. open62541 Documentation. Release 1.4. URL: https://www.open62541.org/doc/master/index.html

(дата обращения – 31.10.2024).

6. Unified Automation. C++ UA Server SDK Documentation. Release 1.5.2.336. URL: https://docu-

mentation.unified-automation.com/uasdkcpp/1.5.2/html/index.html (дата обращения – 31.10.2024).

https://www.open62541.org/doc/open62541-1.0.pdf
https://www.open62541.org/doc/master/index.html
https://documentation.unified-automation.com/uasdkcpp/1.5.2/html/index.html
https://documentation.unified-automation.com/uasdkcpp/1.5.2/html/index.html

