Improving the Uniformity of Pseudorandom Numbers
Abstract
The quality of random tests generation depends on the choice of random number generator. Testing popular generators using the Pearson chi-square test shows that a uniform distribution with a significance level of 70% or higher is observed for only half of the samples. For this reason, to obtain the necessary coverage, you need to increase the volume of tests. A method is proposed to increase the uniformity of distribution for random number generators, based on filtering the sample. Selection of filter parameters allows you to obtain the desired uniformity of distribution with a moderate number of rejects.
References
1. D. H. Lehmer, Mathematical methods in large-scale computing units, Proceedings of a Second Symposium on Large-Scale Digital Calculating Machinery, 1949, Harvard University Press, Cambridge, Mass., 1951, P. 141-146. MR 0044899 (13,495f)
2. G. Marsaglia. Xorshift RNGs. Journal of Statistical Software, 2003, Vol. 8, P. 1-6.
3. www.agner.org/random.
4. M. Matsumoto, T. Nishimura. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation, 1998, Vol. 8 (1), P. 3-30.
5. F.O. Panneton, P. l'Ecuyer, M. Matsumoto. Improved long-period generators based on linear recurrences modulo 2. ACM Transactions on Mathematical Software, 2006, 32 (1), P. 1-16.
6. Е.С. Вентцель, Л.А. Овчаров. Теория вероятностей и ее инженерные приложения. М., "Наука", 1988.
Review
For citations:
Koutsaev A.S. Improving the Uniformity of Pseudorandom Numbers. SRISA Proceedings. 2024;14(1):18-24. (In Russ.)