Preview

SRISA Proceedings

Advanced search

Application of Various Neural Networks Architectures for Mask Calculation in Problem of Inverse Photolithography

Abstract

In this work, we solve the inverse problem of computational photolithography. The mask topology was calculated using deep neural networks. The study was aimed at comparing the effectiveness of the neural network architectures U-Net, Erf-Net and Deep Lab v3, as well as the built-in Calibre Workbench algorithms in solving the problem of inverse photolithography. Training of artificial neural networks was performed on a specially generated and labeled data set. Random shapes were generated using the Calibre Workbench CAD mask for the 90nm transistor gate mask. The comparison was made in terms of accuracy and speed. Edge placement error (EPE) and intersection over union (IOU) were used as metrics in the work. The use of neural networks made it possible to speed up the calculation of the mask by 100 times while maintaining an accuracy of 92% on the IOU metric.

About the Authors

Ya. M. Karandashev
ФГУ ФНЦ НИИСИ РАН; Российский университет дружбы народов
Russian Federation


G. S. Teplov
АО «НИИМЭ»; Московский физико-технический институт
Russian Federation


V. V. Keremet
Московский государственный университет им. М.В.Ломоносова
Russian Federation


A. A. Karmanov
Московский физико-технический институт
Russian Federation


A. V. Kuzovkov
АО «НИИМЭ»
Russian Federation


M. Yu. Malsagov
ФГУ ФНЦ НИИСИ РАН
Russian Federation


References

1. Chien P., Chen M. Proximity effects in submicron optical lithography //Optical microlithography VI. – International Society for Optics and Photonics, 1987. – Т. 772. – С. 35-41.

2. Balasinski A. et al. A novel approach to simulate the effect of optical proximity on MOSFET parametric yield //International Electron Devices Meeting 1999. Technical Digest (Cat. No. 99CH36318). – IEEE, 1999. – С. 913-916.

3. Wong A. K. K. Resolution enhancement techniques in optical lithography. – SPIE press, 2001. – Т. 47.

4. Балан Н. Н. и др. Основные подходы к моделированию формирования фоторезистивной маски в вычислительной литографии //Известия высших учебных заведений. Материалы электронной техники. – 2020. – Т. 22. – №. 4. – С. 279-289.

5. Otto Oberdan W, Garofalo Joseph G, Low KK et al. Automated optical proximity correction: a rulesbased approach // Optical/Laser Microlithography VII / International Society for Optics and Photonics. –– Vol. 2197. –– 1994. –– P. 278–293.

6. Li J. et al. Model-based optical proximity correction including effects of photoresist processes //Optical Microlithography X. – International Society for Optics and Photonics, 1997. – Т. 3051. – С. 643-651.

7. Hung C. Y. et al. First 65nm tape-out using inverse lithography technology (ILT) //25th Annual BACUS Symposium on Photomask Technology. – International Society for Optics and Photonics, 2005. – Т. 5992. – С. 59921U.

8. Красников Г. Я., Синюков Д. В. Проблемы и перспективы развития методов коррекции оптической близости для современных уровней технологии //Труды научного совета РАН" Фундаментальные проблемы элементной базы информационно-вычислительных и управляющих систем и материалов для ее создания". – 2019. – Т. 1. – №. 3. – С. 17.

9. Spence C., Goad S. Computational requirements for OPC //Design for Manufacturability through Design-Process Integration III. – International Society for Optics and Photonics, 2009. – Т. 7275. – С. 72750U.

10. Choi S., Shim S., Shin Y. Machine learning (ML)-guided OPC using basis functions of polar Fourier transform //Optical Microlithography XXIX. – International Society for Optics and Photonics, 2016. – Т. 9780. – С. 97800H.

11. Choi S., Shim S., Shin Y. Neural network classifier-based OPC with imbalanced training data //IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. – 2018. – Т. 38. – №. 5. – С. 938-948.

12. Shi B. et al. Fast OPC repair flow based on machine learning //Design-Process-Technology Cooptimization for Manufacturability XIV. – International Society for Optics and Photonics, 2020. – Т. 11328. – С. 113281B.

13. Shin Y. Computational Lithography Using Machine Learning Models //IPSJ Transactions on System LSI Design Methodology. – 2021. – Т. 14. – С. 2-10.

14. Tryasoguzov, P.E., Kuzovkov, A.V., Karandashev, I.M. et al. Using Machine Learning Methods to Predict the Magnitude and the Direction of Mask Fragments Displacement in Optical Proximity Correction (OPC). Opt. Mem. Neural Networks 30, 291–297 (2021). https://doi.org/10.3103/S1060992X21040056

15. Ye W. et al. LithoGAN: End-to-end lithography modeling with generative adversarial networks //2019 56th ACM/IEEE Design Automation Conference (DAC). – IEEE, 2019. – С. 1-6.

16. Yang H. et al. GAN-OPC: Mask optimization with lithography-guided generative adversarial nets //IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. – 2019. – Т. 39. – №. 10. – С. 2822-2834.

17. Sun X. et al. U-Net convolutional neural network-based modification method for precise fabrication of three-dimensional microstructures using laser direct writing lithography //Optics Express. – 2021. – Т. 29. – №. 4. – С. 6236-6247.

18. Shao H. C. et al. From IC Layout to Die Photograph: A CNN-Based Data-Driven Approach //IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. – 2020. – Т. 40. – №. 5. – С. 957-970.

19. Ma X. et al. Model-driven convolution neural network for inverse lithography //Optics express. – 2018. – Т. 26. – №. 25. – С. 32565-32584.

20. Ma X., Zheng X., Arce G. R. Fast inverse lithography based on dual-channel model-driven deep learning //Optics Express. – 2020. – Т. 28. – №. 14. – С. 20404-20421.

21. Ronneberger O., Fischer P., Brox T. U-net: Convolutional networks for biomedical image segmentation //International Conference on Medical image computing and computer-assisted intervention. – Springer, Cham, 2015. – С. 234-241.

22. Romera E. et al. Erfnet: Efficient residual factorized convnet for real-time semantic segmentation //IEEE Transactions on Intelligent Transportation Systems. – 2017. – Т. 19. – №. 1. – С. 263-272.

23. Chen L. C. et al. Encoder-decoder with atrous separable convolution for semantic image segmenta-

24. tion //Proceedings of the European conference on computer vision (ECCV). – 2018. – С. 801-818.

25. Google Colab, https://colab.research.google.com

26. Pytorch Documentation, https://pytorch.org/docs/stable/index.html

27. Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." In International Conference on Medical image computing and computer-assisted intervention, pp. 234-241. Springer, Cham, 2015.

28. Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", in IEEE International Conference on Computer Vision (ICCV), 2017

29. “Algorithm and methodology for increasing the OPC-recipe efficiency” Medvedev Konstantin A., Kuzovkov Alexey V., Ivanov Vladimir V. 10.22184/NanoRus.2019.12.89.368.372


Review

For citations:


Karandashev Ya.M., Teplov G.S., Keremet V.V., Karmanov A.A., Kuzovkov A.V., Malsagov M.Yu. Application of Various Neural Networks Architectures for Mask Calculation in Problem of Inverse Photolithography. МАТЕМАТИЧЕСКОЕ И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ СЛОЖНЫХ СИСТЕМ: ТЕОРЕТИЧЕСКИЕ И ПРИКЛАДНЫЕ АСПЕКТЫ. 2022;12(4):73-80. (In Russ.)

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2225-7349 (Print)
ISSN 3033-6422 (Online)