Preview

SRISA Proceedings

Advanced search

Thermal Conductivity of Thin Silicon Elliptical Nanostructures

Abstract

The behavior of anomalous thermal conductivity of silicon cylindrical elliptical nanostructures with elliptical cross-section in stationary states is discussed. Numerical simulation has shown that the abnormal thermal conductivity is related to the shape of the cross-section. The smaller the ratio of the large semi-axis of the ellipse to the smaller one, the higher the thermal conductivity of elliptical nanostructures. And that with an increase in temperature, the contribution to abnormal thermal conductivity due to a decrease in the Knudsen number prevails over the contribution due to a decrease in volumetric thermal conductivity. Therefore, with an increase in temperature, the thermal conductivity of cylindrical nanostructures with an elliptical cross-section increases by 28% in the range from 200 to 400 K. The obtained results demonstrate the anomalous nature of the thermal conductivity of thin silicon cylindrical nanostructures with an elliptical cross-section, which distinguishes them from the classical ideas about the thermal conductivity of solids.

About the Author

N. Masalsky
ФГУ ФНЦ НИИСИ РАН
Russian Federation


References

1. J.H. Davies. The physics of low dimensional semiconductors. New York, Plenum, 1998.

2. R. Luzzi, A.R. Vasconcellos, J. Galvão Ramos. Predictive statistical mechanics: A non equilibrium ensemble formalism. Fundamental theories of physics. Dordrecht, Kluwer, 2002.

3. W. Liu, M. Asheghi. Phonon-boundary scattering in ultrathin single-crystal silicon layers. “Appl. Phys. Lett.”, V 84, (2004), 3819–3821.

4. Z.M. Zhang. Nano/Microscale heat transfer. New York, McGraw-Hill, 2007.

5. D. Jou, J. Casas-Vázquez, G. Lebon. Extended irreversible thermodynamics, 4th revised edn. Berlin, Springer, 2010.

6. F. Schwierz, H.Wong, J. J. Liou. Nanometer CMOS. Singapore, Pan Stanford Publishing, 2010.

7. A. Sellitto, V. Cimmelli, D. Jou. Mesoscopic theories of heat transport in nanosystems. Springer Cham Heidelberg New York Dordrecht London, Springer International Publishing Switzerland, 2016.

8. Н.В. Масальский. Аномальная теплопроводность в кремниевых цилиндрических наноструктурах. “Труды НИИСИ”, T 10, (2020), 45-51.

9. C. Cattaneo. Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée. “C. R. Acad. Sc.”, V. 247, (1958), 431–433.

10. F.X. Alvarez, V.A. Cimmelli, D. Jou, A. Sellitto. Mesoscopic description of boundary effects in nanoscale heat transport. “Nanoscale Systems MMTA”, V. 1, (2012), 112–142.

11. A. Sellitto, F.X. Alvarez, D. Jou. Geometrical dependence of thermal conductivity in elliptical and rectangular nanowires. “Int. J. Heat Mass Transfer”, V. 55, (2012), 3114–3120.


Review

For citations:


Masalsky N. Thermal Conductivity of Thin Silicon Elliptical Nanostructures. МАТЕМАТИЧЕСКОЕ И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ СЛОЖНЫХ СИСТЕМ: ТЕОРЕТИЧЕСКИЕ И ПРИКЛАДНЫЕ АСПЕКТЫ. 2022;12(4):81-85. (In Russ.)

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2225-7349 (Print)
ISSN 3033-6422 (Online)