Sensitivity of the Potential Distribution of Conical GAA Nanotransistors to Variations in the Topological Dimensions of the Working Area
Abstract
The sources of potential distribution variation in conical all-around gate (GAA) transistors with a short and thin working area are quantitatively analyzed. A mathematical model of the fluctuation of the potential distribution has been developed, including variations in the topological parameters of the transistor's working area. Fluctuations of the characteristic length are numerically investigated. The sensitivity coefficients are determined. Criteria for evaluating potential changes due to the spread of topological parameters are formulated. nanostructures with an elliptical cross-section, which distinguishes them from the classical ideas about the thermal conductivity of solids.
References
1. Sh. Toriyama, D. Hagishima, K. Matsuzawa, N. Sono. Device simulation of random dopant effects in ultra-small MOSFETs based on advanced physical models. International Conference on Simulation of Semiconductor Processes and DevicesSISPAD’06, SISPAD 2006, 111-114.
2. K. J. Kuhn. Reducing variation in advanced logic technologies: approaches to process and design for manufacturability of nanoscale CMOS. In Proceedings of IEEE International Electron Devices Meeting, 2007, 471–474.
3. K. Kuhn, C. Kenyon, A. Kornfeld, M. Liu, A. Maheshwari, W.K. Shih, S. Sivakumar, G. Taylor, P. VanDerVoorn, K. Zawadzki. Managing process variation in Intel’s 45nm CMOS technology. “Intel Technology Journal”, V. 12(2), (2008), 93-109.
4. K. Takeuchi, M.-S. Ibaraki, A. Nishida. Random fluctuations in scaled MOS devices. International Conference on Simulation of Semiconductor Processes and Devices SISPAD’09, SISPAD 2009, 79-85.
5. M. J. Pelgrom. Matching properties of MOS transistors. “IEEE J. of solid-state circuits”, V. 24, (1989), 1433-1439.
6. J. A. Croon, W. Sansen, H. E. Maes. Matching properties of deep sub-micron MOS transistors, Springer, 2005
7. S. K. Saha. Modeling process variability in scaled CMOS technology. “IEEE Design Test of Computers”, V. 27,(2010), 8–16.
8. K. J. Kuhn, M. D. Giles, D. Becher, P. Kolar, A. Kornfeld, R. Kotlyar, S. T. Ma, A. Maheshwari, S. Mudanai. Process technology variation. “IEEE Trans. on Electron Devices”, V. 58, (2011), 2197–2208.
9. J. S. Yoon, T. Rim, J. Kim, K. Kim, C. K. Baek, Y. H. Jeong. Statistical variability study of random dopant fluctuation on gate-all-around inversion-mode silicon nanowire field-effect transistors. “Appl. Phys. Lett.”, V. 106, (2015), 103507
10. Г. И. Зебрев. Физические основы кремниевой наноэлектроники. М.: БИНОМ. Лаборатория знаний, 2011.
11. M. Onobajo, J. Silva-Martinez. Analog circuit design for process variation-resilient systems-on-achip. Dordrecht: Springer, 2012.
12. R. Rao, A. Srivastava, D. Blaauw, D. Sylvester D. Statistical estimation of leakage current considering inter-and intra-die process variation. In: Proc. International Symposium on Low Power Electronics and Design, 2003, 84–89.
13. R. Sh. Wang, T. Yu, R. Huang, Y. Y. Wang. Impacts of short-channel effects on the random threshold voltage variation in nanoscale transistors. “Science China Information Sciences”, V. 56, (2013), 111-117.
14. M. M. Tehranipoor, U. Guin, D. Forte. Counterfeit integrated circuits: Detection and Avoidance. Springer, 2015.
15. J. P Colinge. FinFETs and Other Multi-Gate Transistor. NewYork: Springer-Verlag, 2008.
16. I. Ferain, C.A. Colinge, J. Colinge Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. “Nature”, V. 479, (2011), 310–316.
17. Н.В. Масальский. Моделирование ВАХ ультратонких КНИ КМОП нанотранзисторов с полностью охватывающим затвором, “Микроэлектроника”. Т. 60(6), 2021, 387-393.
18. Nagy D., Indalecio G., Garcia-Loureiro A.J., Elmessary M.A., Kalna K., Seoane N. FinFET versus gate-all-around nanowire FET: performance, scaling, and variability. “IEEE Journal of the Electron Devices Society”, V. 6, (2018), 332-340.
Review
For citations:
Masalsky N. Sensitivity of the Potential Distribution of Conical GAA Nanotransistors to Variations in the Topological Dimensions of the Working Area. SRISA Proceedings. 2023;13(3):23-29. (In Russ.)