Preview

SRISA Proceedings

Advanced search

Application of Lambert Function to Modeling the BAX GAA Nanotransistors

Abstract

The possibility of using a special Lambert function to simulate the volt-ampere characteristics of silicon field-effect transistors is investigated. An analytical model of a silicon field-effect GAA nanotransistor with a cylindrical geometry of the working area has been developed. At the same time, in the transistor model formulated within the framework of charge separation, the integral expression for the transistor current is replaced by an analytical one using the Lambert function. The calculation results are compared with the simulation results obtained using a widely used software and technology modeling environment. The final formulation of the model is characterized by the following advantages: it is analytical, adequate and compact. High accuracy is achieved with minimal computational cost. This makes it possible to use the considered approach in design tools and the search for an initial approximation for three-dimensional applied technological modeling.

About the Author

N. Masalsky
НИЦ «Курчатовский институт» – НИИСИ
Russian Federation


References

1. Г.Я. Красников, Е.С. Горнев, И.В. Матюшкин. Общая теория технологий и микроэлектроника, Техносфера, М, 2020.

2. More Moore. International Roadmap for Devices and Systems. IRDS, Piscataway, NJ, USA, 2021.

3. Г.Я. Красников. Конструктивно-технологические особенности субмикронных МОП транзисторов. Акционерное общество «Рекламно-издательский центр ТЕХНОСФЕРА», 2011.

4. N Sano, K. Yoshida, G. Park. Fundamental aspect of semiconductor device modeling associated with discrete impurities: drift-diffusion scheme. “IEEE Trans. Electron Devices”, (2020), vol. 67, 3323-3328.

5. Н.В. Масальский. Моделирование ВАХ ультратонких КНИ КМОП нанотранзисторов с полностью охватывающим затвором. “Микроэлектроника”, (2021), т. 50, 436-444.

6. R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.Е. Knuth. On the Lambert W function. «Advances in computational mathematics», (1996), v. 5, 329-359.

7. J.-P. Colinge, FinFETs and Other. Verlag, New York, NY, USA, 2008.

8. G. Tomar, А. Barwari. Fundamental of electronic devices and circuits. Springer, 2019.

9. . M. Lundstrom, J. Guo. Nanoscale Transistors: Device Physics, Modeling and Simulation. Springer: New York, 2006.

10. B. D. Gaynor, S. Hassoun. Fin shape impact on FinFET leakage with application to multithreshold and ultralow-leakage FinFET design. “IEEE Trans. Electron Devices”, (2014), vol. 61, 2738–2744.

11. К.К Абгарян, Д.Л. Ревизников, А.А. Журавлёв, А.Ю. Морозов, Е.С. Гаврилов. Многомасштабное моделирование нейроморфных систем. М.: Изд-во МАКС Пресс, 2022.

12. Ю. Люк. Специальные математические функции и их аппроксимации. М.: Мир, 1980.

13. M. V. Fischetti, W. G. Vandenberghe. Advanced Physics of Electron Transport in Semiconductors and Nanostructures, New York, U.S.A.: Springer, 2016.

14. S. Winitzki. Uniform Approximations for Transcendental Functions. Berlin, Germany: Springer-Verlag, 2003.

15. F. Lime, R. Ritzenthaler, M. Ricoma, F. Martinez, F. Pascal, E. Miranda, O. Faynot, B. Iñiguez. A physical compact DC drain current model for long-channel undoped ultra-thin body (UTB) SOI and asymmetric double-gate (DG) MOSFETs with independent gate operation, “Solid-State Electron.”, (2011), vol. 57, no. 1, 61–66.


Review

For citations:


Masalsky N. Application of Lambert Function to Modeling the BAX GAA Nanotransistors. SRISA Proceedings. 2024;14(4):41-46. (In Russ.)

Views: 20


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2225-7349 (Print)
ISSN 3033-6422 (Online)