The Effect of Random Fluctuations of a Doping Impurity on the Characteristics of Field-Effect Silicon GAA Nanotransistors
Abstract
The effects of random fluctuations of an alloying impurity on the electrophysical characteristics of silicon field GAA nanotransistors with different radii of the working area are investigated. It is shown that transients with a smaller radius are characterized by a decrease in the average value and variation of the subthreshold slope and the DIBL effect, thereby increasing resistance to short-channel effects. On the contrary, the relative variations of the transistor drain current increase with decreasing diameter, which is associated with a decrease in the conductivity of the working area with narrower cross-sections. The absolute fluctuations of the flow current depend significantly on the amount of impurity penetrating into the working area. To determine the causes of fluctuations in the flow currents of silicon field GAA nanotransistors, statistical characteristics of the source/drain series resistance and low field mobility were studied. These parameters critically affect the current spread of the transistor drain at the same time. To offset the influence of the diffusion mechanism of the alloying impurity into the working area, it is recommended to limit the level of doping of the drain/source areas and use relatively large cross-sections of the working area from the range of possible ones. This will ensure stable electro-physical characteristics of transistors with high parry of shortchannel effects.
References
1. More Moore. International Roadmap for Devices and Systems. IRDS, Piscataway, NJ, USA, 2021
2. N Sano, K. Yoshida, G. Park. Fundamental aspect of semiconductor device modeling associated with discrete impurities: drift-diffusion scheme. “IEEE Trans. Electron Devices”, (2020), vol. 67, 3323-3328.
3. Н.В. Масальский. Чувствительность распределения потенциала конических GAA нанотронзисторов к вариациям топологических размеров рабочей области, “Труды НИИСИ РАН”, (2023), т. 13(3), 23-29
4. B. D. Gaynor, S. Hassoun. Fin shape impact on FinFET leakage with application to multithreshold and ultralow-leakage FinFET design. “IEEE Trans. Electron Devices”, (2014), vol. 61, 2738–2744.
5. M. V. Fischetti, W. G. Vandenberghe. Advanced Physics of Electron Transport in Semiconductors and Nanostructures, New York, U.S.A.: Springer, 2016.
6. Масальский Н.В. Моделирование ВАХ ультра тонких КНИ КМОП нанотранзисторов с полностью охватывающим затвором.“Микроэлектроника”, (2021), т. 50, 436-444.
7. K. Huang, Statistical Mechanics, 2nd ed. New York, U.S.A.: John Wiely& Sons, 1987.
8. Kubo, M. Toda, N. Hashitsume. Statistical Physics II: Nonequilibrium Statistical Mechanics, 2nd ed. Berlin, Germany: Springer, 1991.
9. K. Nakanishi, T. Uechi, N. Sano. Self-consistent Monte Carlo device simulations under nano-scale device structures: Role of Coulomb interaction, degeneracy, and boundary condition. “Technical Digest. Int. Electron Device Meeting”, (2009), Dec 2009, 1–4.
10. C. Jacoboni. Theory of Electron Transport in Semiconductors: A Pathway from Elementary Physics to Nonequilibrium Green Functions. New York, U.S.A.: Springer, 2010.
11. M. Uematsu, K. M. Itoh, G. Mil’nikov, H. Minari, N. Mori. Simulation of the effect of arsenic discrete distribution on device characteristics in silicon nanowire transistors. “Tech. Dig. Int. Electron Devices Meet.”, (2012), 709–712.
12. N. Sano, K. Matsuzawa, M. Mukai, N. Nakayama. On discrete random dopant modeling in drift-diffusion simulations: physical meaning of ‘atomistic’ dopants. “Microelectron. Reliab.”, (2002), vol. 42, 189–199.
13. G. Tomar, А. Barwari. Fundamental of electronic devices and circuits. Springer, 2019.
14. M. Lundstrom, J. Guo. Nanoscale Transistors: Device Physics, Modeling and Simulation. Springer: New York, 2006.
15. J.-P. Colinge, FinFETs and Other. Verlag, New York, NY, USA, 2008.
Review
For citations:
Masalsky N. The Effect of Random Fluctuations of a Doping Impurity on the Characteristics of Field-Effect Silicon GAA Nanotransistors. SRISA Proceedings. 2024;14(1):11-17. (In Russ.)