Explicit Form of Fundamental Units of High Degrees in Hyperelliptic Fields of Genus 2 over the Field of Rational Numbers
Abstract
Earlier, polynomials [ ] f x were obtained and described, for which the hyperelliptic field ( )( ) x f contains fundamental units of high degrees. This is equivalent to the existence of -torsion points of high order in the Jacobians of the corresponding hyperelliptic curves. For a series of problems, such as the classification of components of complex curves with pairs of conjugate torsion points, not only the polynomial f is required, but also the explicit form of the fundamental unit of the corresponding hyperelliptic field. In this paper, the explicit form of fundamental units for hyperelliptic fields of genus 2 with torsion points in the Jacobian of order 33, 36, and 48 is presented for the first time.
References
1. В.П. Платонов «Теоретико-числовые свойства гиперэллиптических полей и проблема кручения в якобианах гиперэллиптических кривых над полем рациональных чисел», Успехи математических наук – 2014, Т. 69:1, № 415, -С. 3-38.
2. В.П. Платонов, М.М. Петрунин «О проблеме кручения в якобианах кривых рода 2 над полем рациональных чисел», Доклады РАН, 2012, Т. 446, № 3, С. 263-264.
Review
For citations:
Petrunin M.M. Explicit Form of Fundamental Units of High Degrees in Hyperelliptic Fields of Genus 2 over the Field of Rational Numbers. SRISA Proceedings. 2023;13(3):49-54. (In Russ.)