Preview

SRISA Proceedings

Advanced search

Explicit Form of Fundamental Units of High Degrees in Hyperelliptic Fields of Genus 2 over the Field of Rational Numbers

Abstract

Earlier, polynomials [ ] f x  were obtained and described, for which the hyperelliptic field ( )( ) x f contains fundamental units of high degrees. This is equivalent to the existence of -torsion points of high order in the Jacobians of the corresponding hyperelliptic curves. For a series of problems, such as the classification of components of complex curves with pairs of conjugate torsion points, not only the polynomial f is required, but also the explicit form of the fundamental unit of the corresponding hyperelliptic field. In this paper, the explicit form of fundamental units for hyperelliptic fields of genus 2 with torsion points in the Jacobian of order 33, 36, and 48 is presented for the first time.

About the Author

M. M. Petrunin
ФГУ ФНЦ НИИСИ РАН
Russian Federation


References

1. В.П. Платонов «Теоретико-числовые свойства гиперэллиптических полей и проблема кручения в якобианах гиперэллиптических кривых над полем рациональных чисел», Успехи математических наук – 2014, Т. 69:1, № 415, -С. 3-38.

2. В.П. Платонов, М.М. Петрунин «О проблеме кручения в якобианах кривых рода 2 над полем рациональных чисел», Доклады РАН, 2012, Т. 446, № 3, С. 263-264.


Review

For citations:


Petrunin M.M. Explicit Form of Fundamental Units of High Degrees in Hyperelliptic Fields of Genus 2 over the Field of Rational Numbers. SRISA Proceedings. 2023;13(3):49-54. (In Russ.)

Views: 14


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2225-7349 (Print)
ISSN 3033-6422 (Online)