Preview

SRISA Proceedings

Advanced search

Thermal Conductivity of a Silicon GAA Field-Effect Nanotransistor, Taking into Account the Roughness of the Boundary

https://doi.org/10.25682/NIISI.2025.1.0004

Abstract

A thermal model for silicon field-effect GAA nanotransistors is discussed, taking into account the thermal effects caused by boundary roughness. The model is based on the perturbation theory method, which takes into account the effect of the dependence of the nanowire diameter and surface roughness on the thermal conductivity of the transistor channel, as well as the effect of the characteristics of the GAA nanotransistor structure on heat dissipation. In this case, for thermal correction of the (idealized) transistor model, for which a proven mathematical model has been developed, a weak perturbation should be added through an additional "perturbing" Hamiltonian. Then the various physical quantities associated with the perturbed system can be expressed as "corrections" to the characteristics of the original model. These corrections are a priori small compared to the size of the quantities themselves. However, they 1) significantly change the characteristics of the initial system, and 2) simplify the algorithms for their calculation. Based on the model, the influence of the nanotransistor chip design parameters on its heat dissipation is discussed. The developed model can be used to design circuits based on nanotransistor chips, taking into account thermal factors.

About the Author

N. V. Masalsky
НИЦ «Курчатовский институт» — НИИСИ
Russian Federation


References

1. Nanoelectronics: Devices, Circuits and Systems. Editor by Brajesh Kumar Kaushik. Elsevier, 2018.

2. G. Tomar, A. Barwari. Fundamental of electronic devices and circuits. Springer, 2019.

3. International Technology Roadmap for Semiconductors (ITRS) Interconnect, 2020 Edition. [Online] Available: https://irds.ieee.org/editions/2020 (accessed on 25 September 2023).

4. J.H. Davies. The physics of low dimensional semiconductors. New York: Plenum, 1998.

5. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar. Thermal conductivity of individual silicon nanowires // “Appl. Phys. Lett.”, (2003), V. 83, No.14, 2934-2936.

6. X. Yang, A.C To, R. Tian. Anomalous heat conduction behavior in thin finite-size silicon Nanowires // “Nanotechnology”, (2010), V. 21, No. 15, 155704.

7. P.K. Schelling, SR. Phillpot, P. Keblinski. Comparison of atomic-level simulation methods for computing thermal conductivity // “Phys. Rev. B”, (2002), V. 65, No. 14, 144306.

8. P. Martin, Z. Aksamija, E. Pop, U. Ravaioli. Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires // “Phys. Rev. Lett.”, (2009), V. 102, No.12, 125503.

9. L. Liu, X. Chen. Effect of surface roughness on thermal conductivity of silicon nanowires // “J. Appl. Phys.”, (2010), V. 107, No. 3, 033501.

10. A. Vassighi, M. Sachdev. Thermal and power management of integral circuits. New York, NY, USA: Springer-Verlag, 2006.

11. D. Wolpert, P. Ampadu. Managing temperature effects in nanoscale adaptive system. New York: Springer-Verlag, 2012.

12. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, J.R. Heath. Silicon nanowires as efficient thermoelectric materials // “Nature”, (2008), V. 451, 168-171.

13. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang. Enhanced thermoelectric performance of rough silicon nanowires // “Nature”, (2008), V. 451, 163-167.

14. R. Wang, J. Zhuge, R. Huang, T. Yu, J. Zou, D.-W. Kim, D. Park, Y. Wang. Investigation on variability in metal-gate Si nanowire MOSFETs: Analysis of variation sources and experimental characterization // “IEEE Trans. Electron Devices”, (2011), V. 58, No. 8, 2317-2325.

15. Z. Aksamija, U. Ravaioli. Energy Conservation in Collisional Broadening, Simulation of Semiconductor Processes Devices. Vienna: Springer, 2007.

16. Thermal Nanosystems and Nanomaterials. Topics in Applied Physics. Editor by S. Volz. Berlin: Springer, 2010.

17. J. Ziman. Electrons and phonons: the theory of transport phenomena in solids. Clarendon, 1960.

18. C. Kittel. Introduction to Solid State Physics. New York: Wiley, 2005.

19. F.X. Alvarez, D. Jou, A. Sellitto A. Phonon boundary effects and thermal conductivity of rough concentric nanowires // “J. Heat Transf. T. ASME”, (2011), V. 133, 022402.

20. N. Mingo. Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations // “Phys. Rev. B”, (2003), V. 68, 113308.

21. E. Pop, R. Dutton, K. E. Goodson. Analytic band Monte Carlo Model for electron transport in Si including acoustic and optical phonon dispersion // ”Journal of Applied Physics”, (2004), V. 96, No. 9, 4998-5005.

22. M. Asheghi, Y.K. Leung, S.S. Wong, K.E. Goodson. Phonon-boundary scattering in thin silicon layers // “Appl. Phys. Lett.”, (1997), V. 71, 1798–1800.

23. Z. Aksamija, U. Ravaioli. Joule heating and phonon transport in nanoscale silicon MOSFETs // ”IEEE International Conference on Electro/Information Technology”, (2007), V. 1, 70-72.


Review

For citations:


Masalsky N.V. Thermal Conductivity of a Silicon GAA Field-Effect Nanotransistor, Taking into Account the Roughness of the Boundary. SRISA Proceedings. 2025;15(1):26-32. (In Russ.) https://doi.org/10.25682/NIISI.2025.1.0004

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2225-7349 (Print)